Information Technology
Artificial Intelligence: A General Survey (The Lighthill Report)
Selected quotes:"The Science Research Council has been receiving an increasing number of applications for research support in the rather broad field with mathematical engineering and biological aspects which often goes under the general description Articial Intelligence (Al). The research support applied for is sufficient in volume, and in variety of discipline involved, to demand that a general view of the field be taken by the Council itself.""To supplement the important mass of specialist and detailed information available to the Science Research Council its Chairman decided to commission an independent report by someone outside the Al field but with substantial general experience of research work in multidisciplinary fields including fields with mathematical, engineering and biological aspects."-----"Most workers in Al research and in related elds confess to a pro nounced feeling of disappointment in what has been achieved in the past twenty-five years. Workers entered the feld around 1950, and even around 1960, with high hopes that are very far from having been realised in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.""In the meantime, claims and predictions regarding the potential results of Al research had been publicised which went even farther than the expectations of the majority of workers in the field whose embarrassments have been added to by the lamentable failure of such inflated predictions.""These general statements are expanded in a little more detail in the rest of section 3, which has been influenced by the views of large numbers of people listed in section 1 but which like the whole of this report represents in the last analysis only the personal view of the author. Before going into such detail he is inclined, as a mathematician, to single out one rather general cause for the disappointments that have been experienced: failure to recognise the implications of the 'combinatorial explosion'."See also: BBC TV - June 1973 - Lighthill Controversy Debate at the Royal Institution with Professor Sir James Lighthill, Professor Donald Michie, Professor Richard Gregory and Professor John McCarthy.Also in Lighthill, J., Sutherland, N. S., Needham, R. M., Longuet-Higgins, H. C., and Michie, D. (Eds.), Artificial Intelligence: A Paper Symposium. Science Research Council of Great Britain.
Learning and executing generalized robot plans
Fikes, R.E. | Hart, P.E. | Nilsson, N.J.
"In this paper we describe some major new additions to the STRIPS robot problem-solving system. The first addition is a process for generalizing a plan produced by STRIPS so that problem-specific constants appearing in the plan are replaced by problem-independent parameters.The generalized plan, stored in a convenient format called a triangle table, has two important functions. The more obvious function is as a single macro action that can be used by STRIPSโeither in whole or in partโduring the solution of a subsequent problem. Perhaps less obviously, the generalized plan also plays a central part in the process that monitors the real-world execution of a plan, and allows the robot to react "intelligently" to unexpected consequences of actions.We conclude with a discussion of experiments with the system on several example problems."Artificial Intelligence 3:251-288
On generality and problem solving: a case study using the DENDRAL program
Feigenbaum, E. A. | Buchanan, B. G. | Lederberg, J.
"Heuristic DENDRAL is a computer program written to solve problems of inductive inference in organic chemistry. This paper will use the design of Heuristic DENDRAL and its performance on different problems for a discussion of the following topics: 1. the design for generality; 2. the performance problems attendant upon too much generality; 3. the coupling of expertise to the general problem solving processes; 4. the symbiotic relationship between generality and expertness, and the implications of this symbiosis for the study and design of problem solving systems. We conclude the paper with a view of the design for a general problem solver that is a variant of the "big switch" theory of generality."See also: Stanford University Report (ACM Citation)In Meltzer, B. and Michie, D. (Eds.), Machine Intelligence 6, pp. 165โ190. Edinburgh University Press
Social Implications of Intelligent Machines
Sociologists are concerned to predict the effect of changes on future society.But is prediction in principle possible when intelligence is involved? Ifintelligence is the production of novelty, accurate prediction might seem to bestrictly impossible. However this may be, it seems that the present troubleabout social prediction is simply that there are no adequate theoreticalmodels of societies. This means that politicians are almost powerless topredict, plan, or control, except with incredible errors. We find ourselves injust this position in trying to assess the implications of future intelligence.Machine Intelligence 6
A Survey of the Literature on Problem-solving methods in artificial intelligence
"Problem-solving methods using some sort of heurstically guided search process have been the subject of much research in Artificial Intelligence. This paper groups these problem-solving methods under three major headings: the State-Space Approach, the Problem-Reduction Approach and the Formal-Logic Approach." New York: McGraw-Hill.
Question-answering in English
Isard, S. | Longuet-Higgins, H.C.
The problem we consider in this paper is that of discovering formal ruleswhich will enable us to decide when a question posed in English can beanswered on the basis of one or more declarative English sentences. Toillustrate how this may be done in very simple cases we give rules whichtranslate certain declarative sentences and questions involving the quantifiers'some', 'every', 'any', and 'no' into a modified first-order predicate calculus,and answer the questions by comparing their translated forms with those ofthe declaratives. We suggest that in order to capture the meanings of morecomplex sentences it will be necessary to go beyond the first-order predicatecalculus, to a notation in which the scope of words other than quantifiersand negations is clearly indicated.Machine Intelligence 6
Analysis of curved line drawings using context and global information
We describe the analysis of visual scenes consisting of black on white drawings formed with curved lines, depicting familiar objects and forms: houses, trees, persons, and so on; for instance, drawings found in coloring books. The goal of such analysis is to recognize (by computer) such forms and shapes when present in the input scene; that is, to name (correctly) as many parts of the scene as possible: finger, hand, girl, dance, and so on. Complications occur because each input scene contains several such objects, partially occluding each other and in varying degrees of orientation, size, and so on. The analysis of these line drawings is an instance of'the context problem', which can be stated as'given that a set (a scene) is formed by components that locally (by their shape) are ambiguous, because each shape allows a component to have one of several possible values (a circle can be sun, ball, eye, hole) or meanings, can we make use of context information stated in the form of models, in order to single out for each component a value in such manner that the whole set (scene) is consistent or makes global sense?' Thus, shape drastically limits the values that a component could have, and further disambiguation is possible only by using global information (derived from several components and their interrelations or interconnections) under the assumption that the scene as a whole is meaningful. This paper proposes a way to solve'the context problem' in the paradigm of coloring book drawings. We have not implemented this approach; indeed, a purpose of this paper is to collect criticisms and suggestions.