
Learning and Executing Generalized
Robot Plans'

Richard E. Fikes, Peter E. Hart and
Nils J. Nilsson

Stanford Research Institute, Menlo Park, California 94025

ABSTRACT

In this paper we describe some major new additions to the STRIPS robot problem-solving
system. The first addition is a process for generalizing a plan produced by STRIPS so that
problem-specific constants appearing in the plan are replaced by problem-independent para-
meters.
The generalized plan, stored in a convenient format called a triangle table, has two important

functions. The more obvious function is as a single macro action that can be used by STRIPS—
either in whole or in part—during the solution of a subsequent problem. Perhaps less obviously,
the generalized plan also plays a central part in the process that monitors the real-world
execution of a plan, and allows the robot to react "intelligently" to unexpected consequences of
actions.
We conclude with a discussion of experiments with the system on several example problems.

1. Introduction

In this paper we describe a system of computer programs for controlling a
mobile robot. This system can conceive and execute plans enabling the robot
to accomplish certain tasks such as pushing boxes from one room to another
in a simple but real environment. Although these sorts of tasks are commonly
thought to demand little skill or intelligence, they pose important con-
ceptual problems and can require quite complex planning and execution
strategies.

In previous papers, we described two important components of our robot
system, namely, STRIPS [1] and PLANEX [2]. When a task statement is given

'The research reported herein was supported at SRI by the Advance Research Projects
Agency of the Department of Defense, monitored by the U.S. Army Research Office-Durham
under Contract DAHCO4 72 C 0008.

to the robot, STRIPS produces a plan consisting of a sequence of pre-
programmed actions, and PLANEX supervises the execution of this sequence
to accomplish the task. In this paper we present a major new addition to the
original capabilities of STRIPS and PLANEX that enables the system to
generalize and then save a solution to a particular problem. This generaliza-
tion capability is used in two ways. The more obvious use of a generalized
plan is as a "macro action" that can be used as a single component of a new
plan to solve a new problem. When used in this fashion, generalization be-
comes a powerful form of learning that can reduce the planning time for
similar tasks as well as allow the formation of much longer plans, previously
beyond the combinatoric capabilities of STRIPS.
The second use of generalized plans involves the supervision or monitoring

of plan execution. Often, a real-world robot must reexecute a portion of its
plan because of some failure that occurred during the first attempt at execu-
tion. At such a time, the system has more flexibility if it is not restricted to
repeating identically the unsuccessful portion of the plan, but instead can
reexecute the offending actions with different arguments.

Before getting into details (and defining just what we mean by generalize),
we present in outline form a scenario that illustrates some of the capabilities
of the system. Suppose we give a robot the task "Close window WIND I and
turn off light LITE! ."2 To accomplish this, let us say that the robot decides
to push box BOX I to window WINDI, climb BOX! in order to close the
window, and then proceed to turn off light LITE 1. First, the system generalizes
this specific plan to produce a plan that can, under certain specified conditions,
close an arbitrary window (not just WIND!) and turn off an arbitrary light.
Next, the system applies the appropriate version of this generalized plan to
the specific problem at hand, namely, "close WIND1 and turn off LITE 1 ."
While executing the appropriate version, let us suppose that the robot fails to
push BOX1 to the window because, say, it discovers another box is already
under the window. The PLANEX supervisor will recognize that this new box
will sere the purpose that BOX1 was to serve, and the plan execution will
proceed.
Now let us suppose that, after finishing the first task, the robot is given a

new problem, "Close window WINDS and lock door DOOR!." The system
is capable of recognizing that a portion of the old generalized plan can help

' solve the new task. Thus, the sequence of several component actions needed
to close the window can be readily obtained as a single macro action, and the
planning time required to solve the new problem thereby reduced.
We shall begin with a brief review of the problem-solving program STRIPS.

Then we shall review a novel format for storing plans that conveniently

2 The scenario is imaginary; our robot cannot actually turn off light switches or close
windows.

S
N
V
-I
d
 1
0
9
0
E
1
 O
N
I
1
1
1
0
A
X
3
 C
IN
V
O
N
I
N
E
I
V
3
1

allows most of the legitimate 2" — I subsequences of an n-step plan to be
extracted as a unit in a subsequent planning activity. We then describe a
process by which constants appearing in the plan can be converted to para-

meters so that each plan can handle a family of different tasks. Thus general-

ized, the plan can be stored (i.e., learned) for future use. Next, we review the
operation of PLANEX and discuss how generalized plans are used during
execution to increase the system's capabilities for responding to unplanned-for
situations. Finally, we discuss how STRIPS uses stored plans to compose
more complex ones and describe some experiments with a sequence of
learning tasks.

2. Summary of Strips
2.1. Description

Because STRIPS is basic to our discussion, let us briefly outline its operation.
(For a complete discussion and additional examples, see [I].) The primitive
actions available to the robot vehicle are precoded in a set of action routines.
For example, execution of the routine GOTHRU(DI,R I ,R2) causes the robot
vehicle actually to go through the doorway DI from room RI to room R2.
The robot system keeps track of where the robot vehicle is and stores its other
knowledge of the world in a model 3 composed of well-formed formulas
(wffs) in the predicate calculus. Thus, the system knows that there is a door-
way DI between rooms RI and R2 by the presence of the wff CONNECTS-
ROOMS(DI,R I,R2) in the model.
Tasks are given to the system in the form of predicate calculus wffs. To

direct the robot to go to room R2, we pose for it the goal wff INROOM(RO-
BOT,R2). The planning system, STRIPS, then attempts to find a sequence of
primitive actions that would change the world in such a way that the goal wff
is true in the correspondingly changed model. In order to generate a plan of
actions, STRIPS needs to know about the effects of these actions: that is,
STRIPS must have a model of each action. The model actions are called
operators and, just as the actions change the world, the operators transform
one model into another. By applying a sequence of operators to the initial
world model, STRIPS can produce a sequence of models (representing
hypothetical worlds) ultimately ending in a model in which the goal wff is
true. Presumably then, execution of the sequence of actions corresponding
to these operators would change the world to accomplish the task.
Each STRIPS operator must be described in some convenient way. We

characterize each operator in the repertoire by three entities: an add list, a
delete list, and a precondition viff. The meanings of these entities are straight-
forward. An operator is applicable to a given model only if its precondition
3 Our use of the word "model" is consistent with customary terminology in Artificial

Intelligence. We hope there will be no confusion between our use of the word and its
technical definition in logic, namely an interpretation for a set of formulas.

ff is satisfied in that model. The effect of applying an (assumed applicable)
operator to a given model is to delete from the model all those clauses
specified by the delete list and to add to the model all those clauses specified
by the add list. Hence, the add and delete lists prescribe how an operator
transforms one state into another.

Within this basic framework STRIPS operates in a GPS-like manner [6].
First, it tries to establish that a goal wff is satisfied by a model. (STRIPS uses
the QA3 resolution-based theorem prover [3] in its attempts to prove goal
wffs.) lithe goal wff cannot be proved, STRIPS selects a "relevant" operator
that is likely to produce a model in which the goal wff is "more nearly"
satisfied. In order to apply a selected operator the precondition wff of that
operator must of course be satisfied; this precondition becomes a new subgoal
and the process is repeated. At some point we expect to find that the pre-
condition of a relevant operator is already satisfied in the current model.
When this happens the operator is applied; the initial model is transformed
on the basis of the add and delete lists of the operator, and the model thus
created is treated in effect as a new initial model of the world.
To complete our review of STRIPS we must indicate how relevant oper-

ators are selected. An operator is needed only if a subgoal cannot be proved
from the wffs defining a model. In this case the operators are scanned to find
one w hose effects would allow the proof attempt to continue. Specifically,
STRIPS searches for an operator whose add list specifies clauses that would
allow the proof to be successfully continued (if not completed). When an add
list is found whose clauses do in fact permit an adequate continuation of the
proof, then the associated operator is declared relevant; moreover, the sub-
stitutions used in the proof continuation serve to instantiate at least partially
the arguments of the operator. Typically, more than one relevant operator
instance will be found. Thus, the entire STRIPS planning process takes the
form of a tree search so that the consequences of considering different
relevant operators can be explored. In summary, then, the "inner loop" of
STRIPS works as follows:
(1) Select a subgoal and try to establish that it is true in the appropriate

model. If it is, go to Step 4. Otherwise:
(2) Choose as a relevant operator one whose add list specifies clauses that

allow the incomplete proof of Step I to be continued.
(3) The appropriately instantiated precondition wff of the selected operator

constitutes a new subgoal. Go to Step I.
(4) If the subgoal is the main goal, terminate. Otherwise, create a new

model by applying the operator whose precondition is the subgoal just
established. Go to Step I.
The final output of STRIPS, then, is a list of instantiated operators whose

corresponding actions will achieve the goal.

O
N
I
N
N
V
l
d
 C
IN
V
O
N
I
A
1
0
S
-
W
3
1
9
0
8
d

2.2. An Example

An understanding of STRIPS is greatly aided by an elementary example.

The following example considers the simple task of fetching a box from an

adjacent room. Let us suppose that the initial state of the world is as shown

below:

Room R1

ROBOT

Door

Room R2

Initial Model
Mo: INROOM(ROBOT,R1)

CONNECTS(DI,R1,R2)
CONNECTS(D2,R2,R3)
BOX(BOX1)
INROOM (BOX 1 ,R2)

D BOX1
 Dpoo2 r

Room R3

(V x V y V.:)[CON N ECTS(x,y,z) CON N ECTS(x,z,y)]

Goal viff
Go: (3x)[BOX(x) A INROOM(x,R

We assume for this example that models can be transformed by two
operators GOTHRU and PUSHTHRU, having the descriptions given below.

Each description specifies an operator schema indexed by schema variables.

We will call schema variables parameters, and denote them by strings begin-

ning with lower-case letters. A particular member of an operator schema is

obtained by instantiating all the parameters in its description to constants.

It is a straightforward matter to modify a resolution theorem prover to

handle wffs containing parameters [1], but for present purposes we need only

know that the modification ensures that each parameter can be bound only to

one constant; hence, the operator arguments (which may be parameters) can
assume unique values. (In all of the following we denote constants by strings

beginning with capital letters and quantified variables by x, y or z):

GOTHRU(d,r I ,r2)
(Robot goes through Door d from Room rl into Room r2.)
Precondition Kff
INROOM(ROBOT,r1) A CONNECTS(d,r1,r2)

Delete List

INROOM(ROBOT,S)
(Our convention here is to delete any clause containing a predicate of the
form INROOM(ROBOT,S) for any value of S.)
Add List
INROOM(ROBOT,r2)

PUSHTHRU(b,d,r1,r2)
(Robot pushes Object b through Door d from Room rl into Room r2.)
Precondition wff
INROOM(b,r1) A INROOM(ROBOT,r1) A CONNECTS(d,r1,r2)

Delete List
INROOM(ROBOT,S)
INROOM(b,S)

Add List
1NROOM(ROBOT,r2)
INROOM(b,r2).

When STRIPS is given the problem it first attempts to prove the goal
Go from the initial model Mo. This proof cannot be completed; however, were
the model to contain other clauses, such as INROOM(BOXI,R1), the proof
attempt could continue. STRIPS determines that the operator PUSHTHRU
can provide the desired clause; in particular, the partial instance PUSHTHRU
(BOXI,d,r1,R1) provides the wff INROOM(BOX 1,R1).

The precondition G, for this instance of PUSHTHRU is

G,: INROOM(BOXI,r1)
A INROOM(ROBOT,r1)
A CONNECTS(d,r I ,R I).

This precondition is set up as a subgoal and STRIPS tries to prove it from .4/0.
Although no proof for G, can be found, STRIPS determines that if

rl = R2 and d = DI, then the proof of G, could continue were the model to
contain INROOM(ROBOT,R2). Again STRIPS checks operators for one
whose effects could continue the proof and settles on the instance GO-
THRU(d,r1,R2). Its precondition is the next subgoal, namely:

G2: INROOM(ROBOT,r1)
CONNECTS(d,r1,R2).

STRIPS is able to prove G2 from Mo, using the substitutions rl = RI and
d = DI. It therefore applies GOTHRU(DI,R1,R2) to Mo to yield:

LEARNING AND EXECUTING R
O
B
O
T
 P
L
A
N
S

MI: INROOM(ROBOT,R.',
CONNECTS(D 1,R I, R2)
CONNECTS(D2,R2,R3)
BOX(BOX1)
INROOM(BOXI,R2)

(Vx dy Vz)[CONNECTS(x,y,z)CONNECTS(x,z,y)].

Now STRIPS attempts to prove the subgoal G1 from the new model Mi.
The proof is successful with the instantiations rl = R2, d = DI. These
substitutions yield the operator instance PUSHTHRU(BOX1,D 1,R2,R 1),
which applied to MI yields

M2: INROOM(ROBOT,R1)
CONNECTS(DI,R1,R2)
CONNECTS(D1,R2,R3)
BOX(BOX I)
INROOM(BOXI,R1)

(Vx Vy Vz)[CONNECTS(x,y,z)CONNECTS(x,z,y)].

Next, STRIPS attempts to prove the original goal, Go, from M2. This attempt
is successful and the final operator sequence is

GOTHRU(D1,R1,R2)
PUSHTHRU(BOXI,D1,R2,R1).

We have just seen how STRIPS computes a specific plan to solve a par-
ticular problem. The next step is to generalize the specific plan by replacing
constants by new parameters. In other words, we wish to elevate our partic-
ular plan to the status of a plan schema, or macro operator, analogous to the
primitive operators we were given initially. Moreover, we would like to store
a macro operator in such a way as to make any of its legitimate subsequences
also available to STRIPS. In the next section we describe a storage format,
called a triangle table, that has this property. Our procedure for plan general-
ization will be explained after we have discussed triangle tables and their
properties.

3. Triangle Tables

Suppose STRIPS has just computed a plan consisting of the sequence of n
operators OPI,OP2, ...,OP„. In what form should this plan be presented to

PLANEX, the system responsible for monitoring the execution of plans? In
what form should it be saved? For purposes of monitoring execution,
PLANEX needs at every step to be able to answer such questions as
(a) Has the portion of the plan executed so far produced the expected

results?
(b) What portion of the plan needs to be executed next so that after its

execution the task will be accomplished?
(c) Can this portion be executed in the current state of the world?

Also, for purposes of saving plans so that portions of them can be used in a
later planning process, we need to know the preconditions and effects of any
.portion of the plan.

If we are to have efficient methods for answering Questions (a)—(c), we
must store a plan in a way that plainly reveals its internal structure. In par-
ticular, we must be able to identify the role of each operator in the overall
plan: what its important effects are (as opposed to side effects) and why these
effects are needed in the plan. To accomplish this, we decided to store plans
in a tabular form called a triangle table.4
A triangle table is a lower triangular array where rows and columns

correspond to the operators of the plan.
An example of a triangle table is shown in Fig. I. (The reader may tempo-

rarily ignore the heavily outlined rectangle.) The columns of the table, with
the exception of Column zero, are labelled with the names of the operators of
the plan, in this example 0P1, OP, For each Column i, i = 1, . . ., 4, we
place in the top cell the add list A, of operator OP,. Going down the ith
column, we place in consecutive cells the portion of A; that survives the
application of subsequent operators. Thus, A, 2 denotes those clauses in A l
not deleted by 0P2; A112,3 denotes those clauses in A112 not deleted by OP3,
and so forth. Thus, the ijth cell of the matrix contains those v.ffs added
by the jth operator that are still true at the time of application of the ith
operator.
We can now interpret the contents of the ith row of the table, excluding

the left-most column. Since each cell in the ith row (excluding the left-most)
contains statements added by one of the first (i — 1) operators but not
deleted by any of those' operators, we see that the union of the cells in the ith
row (excluding the left-most) specifies the add list obtained by applying the
(i — 1)st head of the plain; i.e., by applying in sequence OP,, .,OP,_,.
We denote by A, the add list achieved by the first] operators applied in
sequence. The union of the cells in the bottom row of a triangle table evidently
specifies the add list of the complete sequence.
The left-most column of the triangle table, which we have thus far ignored,

is involved with the preconditions for the stored plan. During the formation
4 We are indebted to John Munson who prompted us to try a tabular format.

•

PROBLEM-SOLVING AND PLANNING

of the plan, STRIPS produced a proof of each operator's preconditions from
the model to which the operator was applied. We will define the set of clauses
used to prove a formula as the support of that formula. We wish to ensure
that the ith row of a triangle table contains all the wffs in the support of the
preconditions for Operator i. In general, some clauses in the support for
Operator i will have been added by the first i — I operators in the plan and
will therefore be included in Row i, as described in the previous paragraphs.

1

2

3

4

5

PC
1

OP
1

OP
2

OP
3

OP
4

PC
2

A
1

PC
3

A
1/2

A
2

PC
4

A
1/2,3

A
2/3

A
3

A1/2,3,4
A
2/3,4

A
3/4

A
4

2 3 4

Flo. 1. A triangle table.

The remainder of the support clauses appeared in the initial model and were
not deleted by any of the first i — I operators. These clauses, which we denote
by PCi, are precisely the clauses that are entered into the left-most (Column
0) cell of Row i. Hence, we see that Column 0 of a triangle table contains those
clauses from the initial model that were used in the precondition proofs for
the plan. It is convenient to flag the clauses in each Row i that are in the
support for Operator i and hereafter speak of them as marked clauses; by
construction, all clauses in Column 0 are marked. Note that in proving the
preconditions of operators, STRIPS must save the support clauses so that the
triangle table can be constructed.
As an example, we show in Fig. 2 the triangle table for the plan discussed

in the previous section. The clauses that are marked by an asterisk "*" were
all used in the proofs of preconditions.
We have seen how the marked clauses on Row i constitute the support of

the preconditions for the ith operator. Let us now investigate the precon-
ditions for the ith tad of the plan—that is, the preconditions for applying the
operator sequence OP, OP,„ . . OP.. The key observation here is that the
ith tail is applicable to a model if the model already contains that portion of
the support of each operator in the tail that is not supplied within the tail
itself. This observation may be formulated more precisely by introducing the
notion of a kernel of a triangle table. We define the ith kernel of a table to be
the unique rectangular subarray containing the lower left-most cell and Row i.
We assert now that the ith tail of a plan applicable to a model if all the
marked clauses in the ith kernel are true in that model. Let us see by example
why this is so.

3

*INROOM(ROBOT,R1)

*CONNECTS(D1,R1,R2) COTHRU(D1,R1,R2)

*INROOM(BOX1,R2)

*CONNECTS(D1,R1,R2)

*CONNECTS(x,y,z)

CONNECTS(x,z,y)

*INROOM(ROBOT,R2)

PUSHTHRIABOX1.01,R2,R1)

INROO4(ROBOT,R1)

INROO4(BOX1,R1)

FIG. 2. Triangle table for example plan.
(A "*" preceding a clause indicates a "marked" clause.)

Consider again Fig. I, in which we have heavily outlined Kernel 3. Let us
assume that all marked clauses in this kernel are true in the current model.
(When all the marked clauses in a kernel are true, we shall say that the kernel
is true.) Certainly, OP3 is applicable; the marked clauses in Row 3 are true,
and these marked clauses support the proof of the preconditions of OP3.
Suppose now that OP3 is applied to the current model to produce a new model
in which Ay, the set of clauses added by OP3, is true. EN idently, OP, is now
applicable, since all the marked clauses in Row 4 are true: those clauses
within the outlined kernel were true before applying OP3 (and by construction
of the triangle table are still true), and those outside the kernel (that is. A3)

LEARNING A
N
D
 EXECUTING R

O
B
O
T
 P
L
A
N
S

are true because they were added by OP3. Thus, the truth of the marked
clauses in Kernel 3 is a sufficient condition for the applicability of the tail of
the plan beginning with OP3.
We have some additional observations to make about triangle tables before

moving on to the matter of plan generalization. First, notice that Kernel 1—
that is, the left-most column of a triangle table—constitutes a set of sufficient
conditions for the applicability of the entire plan. Thus, we can take the
conjunction of the clauses in Column 0 to be a precondition formula for the
whole plan.
A second observation may help the reader gain a little more insight into

the structure of triangle tables. Consider again the table of Fig. 1, and let us
suppose this time that Kernel 2 is true. Since Kernel 2 is true, the sequence 0P2,
0P3, OP, is applicable. Upon applying OP2, which is immediately applicable
because the marked clauses in Row 2 are true, we effectively add Column 2
to the table. Moreover, we lose interest in Row 2 because OP2 has already
been applied. Thus the application of OP2 transforms a true Kernel 2 into a
true Kernel 3, and the application of the operators in the tail of the plan can
continue.

4. Generalizing Plans

4.1. Motivation

The need for plan generalization in a learning system is readily apparent.
Consider the specific plan produced in the example of Section 2:
GOTHRU(DI,RI,R2)
PUSHTH RU(BOX I ,D1,R2,R 1).

While this sequence solves the original task, it probably doesn't warrant
being saved for the future unless, of course, we expect that the robot would
often need to go from Room RI through Door DI to Room R2 to push back
the specific box, BOX1, through Door DI into Room RI. We would like to
generalize the plan so that it could be free from the specific constants, DI, RI,
R2, and BOX1 and could be used in situations involving arbitrary doors,
rooms, and boxes.

In considering possible procedures for generalizing plans we must first
reject the naive suggestion of merely replacing each constant in the plan by
a parameter. Some of the constants may really need to have specific values
in order for the plan to work at all. For example, consider a modification of
our box-fetching plan in which the second step of the plan is an operator that
only pushes objects from room R2 into room RI. The specific plan might
then be

GOTHRU(D1,RI,R2)
SPECIALPUSH(BOX I).

When we generalize this plan we cannot replace all constants by parameters,
since the plan only works when the third argument of GOTHRU is R2. We
would want our procedure to recognize this fact and produce the plan

GOTHRU(dl,r1,R2)
SPECIALPUSH(b1).

Another reason for rejecting the simple replacement of constants by para-

meters is that there is often more generality readily available in many plans

than this simple procedure will extract. For example, the form our box-
pushing plan, GOTHRU followed by PUSHTHRU, does not require that the
room in which the robot begins be the same room into which the box is
pushed. Hence the plan could be generalized as follows:

GOTH RU(d I ,r1,r2)
PUSHTH RU(b,d2,r2,r3)

and be used to go from one room to an adjacent second room and push a
box to an adjacent third room.
Our plan-generalization procedure overcomes these difficulties by taking

into account the internal structure of the plan and the preconditions of each
operator. The remainder of this section is a description of this generalization
procedure.

4.2. The Generalization Procedure

The first step in our generalization procedure is to "lift" the triangle table to
its most general form as follows: We first replace every occurrence of a
constant in the clauses of the left-most column by a new parameter. (Multiple
occurrences of the same constant are replaced by distinct parameters.) Then
the remainder of the table is filled in with appropriate add clauses assuming
completely uninstantiated operators (i.e., as these add clauses appear in the
operator descriptions), and assuming the same deletions as occurred in the
original table. As an example, Fig. 3 shows the table from Fig. 2 in its most
general form.
The lifted table thus obtained is too general; we wish to constrain it so that

the marked clauses in each row support the preconditions of the operator on
that row, while retaining the property that the lifted table has the original
table as an instance. To determine the constraints we redo each operator's
precondition proof using the support clauses in the lifted table as axioms and
the precondition formulas from the operator descriptions as the theorems to
be proved. Each new proof is constructed as an isomorphic image of STRIPS'
original preconditions proof by performing at each step resolutions on the
same clauses and unifications on the same literals as in the original proof.
This proof process ensures that each original proof is an instance of the new

O
N
I
N
N
V
i
d
 O
N
V
 O
N
I
A
1
0
9
-
0
1
3
1
2
0
H
d

2

3

.INROOM(pl,p2)

.CONNECTS(p3,p4,0) GOT1fRU(pll.p12,p13)

•INROOM(p6,p7)

.CONNECTS(p8,p9,p10)

•CONNECTS(x.y,z)

CONNECTS(x.z,y)

SINROOM(ROBOT,p13)

PUSHTHRU(p14.05,p16.07)

INROOM(ROBOT,p17)

INROOM(p14,p17)

1 2

FIG. 3. Triangle table after initial lifting process.

generalized proof and therefore provides the basis for ensuring that the
original table is an instance of the lifted table. Any substitutions of para-
meters for constants or for other parameters in the new proofs act as con-
straints on the generality of the plan and must be reflected in the lifted table.
Hence these parameter substitutions are made throughout the lifted table and
the generalized plan. The table resulting from the substitutions determined by
the new proofs is constrained in the desired way.

Consider the effects of the new precondition proofs on the example table
shown in Fig. 3. The precondition proof for GOTHRU(p11,p12,p13) pro-
ceeds as follows:

Negation of Theorem: --,INROOM(ROBOT.p12) v --CONNECTS(p11,p12,p13).

Axiom: INROOM(pl,p2)

---CONNECTS(pl 1.p2,p13)

Axiom: CONNECTS(p3,p4,p5)

nil

Substitutions

ROBOT-1.131
p2-.1112

p3-1:41
p2-•p4
p5-..p13

The substitutions from the proof are made in the table and then the following
precondition proof for PUSHTHRU(p14,p15,p16,p17) is performed:

Negation of Theorem: "-INROOM(ROBOT,p16) v ,--INROOM(p14,p16) V

,-CONNECTS(p 1 5,p16,p 17)

Axiom: 1NROOM(p6,p7)

•---INROOM(ROBOT,p7) v ,--CONNECTS(p15,p7,p17)

Axiom: INROOM(ROBOT,p5)

--CONNECTS(pI5,p5,p17)

Axiom: "--CONNECTS(r,y,z) V CONNECTS(r,:,))__

,--CONNECTS(p 1 5,p17,p5)

Axiom: CONNECTS(p8,p9,p10)

nil

Substitutions

p6--p14
p7--p16

p5-1:17

p8-.p15
p9-p17
p5->p10

The substitutions from this proof are then used to produce the triangle table
shown in Fig. 4.
The two proofs have constrained the plan so that the room into which the

first operator takes the robot is the same room that contains the object to be
pushed by the second operator. The robot's initial room and the target room
for the push, however, remain distinct parameters constrained only by the
precondition requirements that they each be adjacent to the object's initial
Mom.

4.3. Two Refinements

Before a generalized plan is stored, two additional processing steps are
carried out—one to improve efficiency and the other to remove possible
inconsistencies. The first step eliminates some cases of overgeneralization

• produced during the lifting process and therefore makes more efficient the use
of the plan by STRIPS and PLANEX. Often a clause in a plan's initial model
will be in the support set of more than one operator, and therefore will
appear more than once in Column 0 of the triangle table. When the table is
lifted, each occurrence of the clause will generate new parameters. For
example, in Fig. 3, CONNECTS(D1,R1,R2) was lifted to CONNECTS-
(p3,p4,p5) and to CONNECTS(p8,p9,p10). In many cases this lifting pro-

S
N
V
i
d
 1
01

30
1:

1
O
N
L
1
1
1
0
3
X
3
 C
1N
V
O
N
I
N
E
1
V
3
1

2

3

•INROOM(ROBOT,p2)

•CONHECTS(p3.p2,p5) GO7HRU(p3,p2,B5)

.01N1OOM(p6,0)

sCONNECTS(p8.p9.p5)

4000HNECTS(x,y,z)

CONNECTS(x.z.y)

•IHROOM(ROBOT,p5) PUSHTHRU(1,6,p8,p5,p9)

IBMOOM(ROBOT,p9)

IHROOM(p6,p9)

O 1 2

FIG. 4. Final form of triangle table for generalized plan.

cedure enhances the generality of the plan (as it did for the box-fetching plan
by allowing the first and third rooms to be distinct), but it also produces cases
of over-generalization that, while not incorrect, can lead to inefficiencies.
For example, consider a case in which INROOM(BOXI,RI) appears twice
in Column 0 of a triangle table. When the table is lifted, the occurrences of
the clause in Column 0 might become INROOM(pl,p2) and INROOM(p3,
p4). If the precondition proofs cause pl to be substituted for p3, but do not
constrain p2 and p4, then we have a plan whose preconditions include the
clauses

INROOM(pl,p2) and
INROOM(pl,p4).

Therefore we have a plan whose preconditions allow Object pl to be in two
distinct rooms at the same time, even though we know that in any semanti-
cally correct model Object pl will be in only one room.
We eliminate most cases of this overgeneralization by recognizing those

cases where two parameters are produced from a single occurrence of a
constant in a single clause; if both such parameters do not appear as argu-
ments of operators in the plan, then they can be bound together and one
substituted for the other throughout the table without effectively inhibiting
the generality of the plan. This procedure would substitute p2 for p4 in the

1NROOM example above, thereby making the two occurrences of the clause
identical, but would not generate any constraining substitutions for the
CONNECTS clause in the box-fetching example.
The second processing step that is performed before the plan is stored is

needed to avoid inconsistencies that can occur in the lifted tables. The
difficulty can be illustrated with the following example.

Consider a simple plan, PUSH(BOX I,LOCI), PUSH(BOX2,LOC2), for
pushing two boxes to two locations. The unlifted triangle table for this plan
might be as shown in Fig. 5a, where for simplicity we have not shown all
clauses. When this table is lifted and the precondition proofs redone, no
constraints are placed on-the lifted table and it has the form shown in Fig. 5b.
Suppose now that STRIPS were to use this plan with boxl and box2 instan-
tiated to the same object and loci and loc2 instantiated to distinct locations.
In that case STRIPS would evidently have a plan for achieving a state in
which the same object is simultaneously at two different places!

1

2

3

2

3

PUSH(BOXI,LOC1)

PUSH(BOX2,LOC2)AT(80X1,LOC1)

AT(HOX1,LOC1) AT(BOX2.LOC2)

(a) Unlifted Table

PUSH(boxl,locl)

2

PUSH(box2.1oc2)AT(boxl,locl)

AT(boxl.locl) AT(box2.1oc2)

1

2

3

1 2

(b) Inconsistent Lifted Table

PUSH(boxl.locl)

AT(boxl,locl) PUSH(box2,1oc2)

boxl box2

AT(boxl,locl)

AT(box2,1oc2)

1 2

(c) Correct Lifted Table

FIG. 5. Triangle table for box-pushing plan

O
N
I
N
N
V
l
d
 C
IN
V
O
N
I
A
1
0
9
4
A
1
3
1
0
0
E
l
d

The source of this embarrassment lies in the assumption made above that
the deletions in the lifted table can be the same as in the unlifted table. In our
example, the clause AT(boxl,locl) should be deleted by the PUSH(box2,
loc2) operator in the case where boxl and box2 are bound to the same object,
but not deleted otherwise. Using the deletion algorithm described below, we
represent this situation in the lifted table by replacing the clause AT(box I ,
loci) in Row 3 by the clause form of

boxl box2 AT(box 1 ,locl)

as shown in Fig. 5(c). This implication serves us well since the theorem prover
can deduce AT(boxl,locl) as being part of the plan's additions list for exactly
those cases in which boxl and box2 are distinct.
We now consider in general how deletions are correctly accounted for in the

lifted triangle tables. After all the precondition proofs are redone for the
lifted table, the delete list of each operator is considered beginning with the
first operator and continuing in sequence through the plan. The delete list of
the ith operator is applied to the clauses in Row I of the table to determine
which clauses should appear in Row i + 1 of the table.' Recall that an
operator's delete list is specified to STRIPS as a list of literals, and any
clause that unifies with one of these literals is deleted. Application of the
delete list will cause the lifted table to be modified only when a unification
with a delete literal requires that a parameter pl be replaced by another
parameter p2 or by a constant Cl. In that case the clause will unify with the
delete literal only when pl and p2 are instantiated to the same constant or
when pl is instantiated to Cl. Hence the clause is replaced in the next row
of the table by an implication as follows:

pl p2 clause or
pl 0 Cl n clause.

This implication allows the theorem prover to deduce the clause in only those
cases where the operator's delete list would not have deleted it from the model.

lithe clause that is replaced by the implication in a conditional deletion is
part of the support of an operator in the plan (i.e., the clause is marked), then
the implication must be accompanied by another addition to the table. In
particular, if a clause CLI is part of the support for the jth operator of the
plan and CLI is replaced in Row j of the table by the implication pl
p2 CLI, then pl p2 must be added as a marked clause to Cell (1,0) of the
table. This addition to the table ensures that the jth operator's preconditions
can be proved from the marked clauses in Row j of the table. The precon-
ditions proof previously obtained will remain valid with the addition of a

9 This characterization of the deletion applications requires that we include in Cell (1,0)
of the table all the clauses that appear anywhere in Column 0. The resulting redundant
occurrences of Column 0 clauses can be edited out before the table is stored.

preliminary proof step in which clause CLI is derived from pl p2 and
pl p2 CLI.

After these two processing steps are completed, the generalized plan is
ready to be stored away as a macro operator, or MA CROP, for later use by
STRIPS and PLANEX.

5. Execution Strategies

5.1. Requirements for the Plan Executor

In this section we shall describe how a program called PLANEX uses triangle
tables to monitor the execution of plans. An early version of PLANEX was
described by Fikes [2]. It is now being used in conjunction with STRIPS and
the MACROP generation procedures to control the SRI robot [4].
One of the novel elements introduced into artificial intelligence research by

work on robots is the study of execution strategies and how they interact with
planning activities. Since robot plans must ultimately be executed in the real
world by' a mechanical device, as opposed to being carried out in a mathe-
matical space or by a simulator, consideration must be given by the executor
to the possibility that operations in the plan may not accomplish what they
were intended to, that data obtained from sensory devices may be inaccurate,
and that mechanical tolerances may introduce errors as the plan is executed.
Many of these problems of plan execution would disappear if our system

generated a whole new plan after each execution step. Obviously, such a
strategy would be too costly, so we instead seek a plan execution scheme
with the following properties:
(I) When new information obtained during plan execution implies that

some remaining portion of the plan need not be executed, the executor should
recognize such information and omit the unneeded plan steps.
(2) When execution of some portion of the plan fails to achiese the

intended results, the executor should recognize the failure and either direct
reexecution of some portion of the plan or, as a default, call for a replanning
activity.

5.2. Preparation of the MACROP for Execution

Rather than working with the specific version of the plan originally produced
by STRIPS, PLANEX uses the generalized MACROP to guide execution.
The generalized plan allows a modest amount of replanning by the executor
should parts of the plan fail in certain ways.

Before a MACROP can be used by PLANEX, its parameters must be
partially instantiated using the specific constants of the goal w ff. This special-
izes the MACROP to the specific task at hand while it leaves as general as
possible the conditions under which it can be executed. This partial instantia-
tion process is quite simple: We put in the lower left-most cell of the triangle

LEARNING AND EXECUTING R
O
B
O
T
 P
L
A
N
S

table those clauses from the original model that were used by STRIPS in
proving the goal wff. Then we use all of the clauses in the entire last row of
the MACROP to prove the goal wff. Those substitutions made during this
proof are then made on the entire MACROP. In addition we mark those
clauses in the last row of the MACROP that were used to support the goal
wff proof. This version of the MACROP is the one used to control execu-
tion.6

Let us illustrate what we have said about preparing a MACROP for
execution by considering our example of fetching a box. In Fig. 4, we have
the MACROP for this task. In Section 2, the goal wff for this task was given as

(3x)[BOX(x) A INROOM(x,R I)].
In the proof of this goal wff we used the clause BOX(BOX1) from the
original model, Mo. Therefore, we insert this clause in Cell (3,0) of the triangle
table. We now use the clauses in Row 3 of the MACROP in Fig. 4 (together
with BOX(BOX1), just inserted) to prove the goal wff. That is, we use
BOX(BOX I), INROOM(ROBOT,p9) and INROOM(p6,p9) to prove
(3x)[BOX(x) A INROOM(x,R1)]. The substitutions made in obtaining the
proof are BOX! for p6 and R1 for p9. When these substitutions are applied
to the MACROP of Fig. 4 and the support clauses for the new proof are
marked, we obtain the execution MACROP shown in Fig. 6.

•INROOM(ROBOT,p2)

A.CONNECTS(p3,p2,p10) GOTHRU(p3,p2,p10)

4.1NROOM(BOX1,p10)

*CONNECTS(p8,R1,p10)

•CONNECTS(x.y,z)

CONNECTS(x,z,y)

sINROOM(ROBOT,p10)

PUSHTHROUGH(BOX1,p8,p10,R1)

*BOX(BOX1)

INROO1(ROBOT,R1)

•INROOM(BOX1,R1)

FIG. 6. Execution MACROP for he fetch a box task.
6 Some increase in generality can be obtained by putting in the lower leftmost cell of the

triangle table generalized versions of the original model clauses. Some of the parameters in
these generalized clauses might remain unbound in the proof of the goal wff, thereby making
the table more general. In our implementation we shunned this additional complication.

5.3. The PLANEX Execution Strategy

Our strategy for monitoring the execution of plans makes use of the kernels
of the execution MACROP. Recall that the ith kernel of a triangle table for
an n-step plan is the unique rectangular subarray containing Row i and Cell
(n + 1, 0). The importance of the ith kernel stems from the fact that it con-
tains (as marked clauses) the support of the preconditions for the ith tail of
the plan—that is, for the operator sequence {OPE..... OP.). Thus if at some
stage of plan execution the marked clauses in the ith kernel are provable, then
we know that the ith tail is an appropriate operator sequence for achieving the
goal. At each state of execution we must have at least one true kernel if we are
to continue execution of the plan.
At the beginning of execution we know that the first kernel is true, since

the initial model was used by STRIPS when the plan was created. But at later
stages. unplanned outcomes might place us either unexpectedly close to the
goal or throw us off the track completely. Our present implementation adopts
a rather optimistic bias. We check each kernel in turn starting with the
highest numbered one (which is the last row of the MACROP) and work
backwards from the goal until we find a kernel that is true. If the goal kernel
(the last row) is true, execution halts; otherwise we determine if the next-to-
last kernel is true, and so on, until we find a true kernel k1 and a corresponding

tail of the plan {01'1—, OP.). The execution strategy then executes the
action corresponding to OP, and checks the outcome, as before, by searching
for the highest-numbered true kernel. In an "ideal" world this procedure

merely executes in order each operator in the plan. On the other hand, the
procedure has the freedom to omit execution of unnecessary operators and to
overcome failures by repeating the execution of operators. Replanning by
STRIPS is initiated when no kernels are true.'
When checking to see if a kernel is true, we check to see if some instance of

the conjunction of marked clauses in the kernel can be proved from the
present model. Once such an instance is found, we determine the corresponding
instance of the first operator in the tail of the plan and execute the action
corresponding to that instance. Thus the generality of representation of the
execution MACROP allows a great deal of flexibility in plan execution. For
example, consider a case where PLANEX is executing a plan that takes the

robot from one room through a second room into a third room. If, when the
robot attempts to go through the door connecting the second and third
rooms, the door is found to be locked, then PLANEX may be able to

'Typically, when replanning is necessary it is sufficient to produce a short sequence of
operators to "get back onto the track" of the original plan. Since STRIPS has the MAC-

ROP for the original plan in its repertoire of operators, the new plan can often be formed
by composing a sequence of operators and appending it to an appropriate tail of the
MACROP.

O
N
I
N
N
V
i
d
 C
IN

V
O
N
I
A
1
0
S
4
A
1
3
1
8
0
E
i
d

reinz.tantiate parameters so that the first part of the plan can be reexecuted
to take the robot from the second room through some new fourth room and
then into the target third room.
An interesting by-product of our optimistic strategy of examining kernels

in backwards order is that PLANEX sometimes remedies certain blunders
made by STRIPS. Occasionally, STRIPS produces a plan containing an
entirely superfluous subsequence—for example, a subsequence of the form
OP, OP-', where OP-' precisely negates the effects of OP. (Such a "detour"
in a plan would reflect inadequacies in the search heuristics used by STRIPS.)
During plan execution, however, PLANEX would effectively recognize that
the state following OP-1 is the same as the state preceding OP, and would
therefore not execute the superfluous subsequence.

5.4. The PLANEX Scanning Algorithm

The triangle table is a compact way of representing the kernels of a MAC-
ROP; most cells of the table occur in more than one kernel. We have exploited
this economy of representation by designing an efficient algorithm for finding
the highest-numbered true kernel. This algorithm, called the PLANEX scan,
involves a cell-by-cell scan of the triangle table. We give a brief description
of it here and refer the reader to Fikes [2] for more details. Each cell exam-
ined is evaluated as either True (i.e., all the marked clauses are provable from
the current model) or False. The interest of the algorithm stems from the order
in which cells are examined. Let us call a kernel "potentially true" at some
stage in the scan if all evaluated cells of the kernel are true. The scan algo-
rithm can then be succinctly stated as: Among all unevaluated cells in the
highest-indexed potentially true kernel, evaluate the left-most. Break "left-
most ties" arbitrarily. The reader can verify that, roughly speaking, this
table-scanning rule results in a left-to-right, bottom-to-top scan of the table.
However, the table is never scanned to the right of any cell already evaluated
as false. An equivalent statement of the algorithm is "Among all unevaluated
cells, evaluate the cell common to the largest number of potentially true
kernels. Break ties arbitrarily." We conjecture that this scanning algorithm
is optimal in the sense that it evaluates, on the average, fewer cells than any
other scan guaranteed always to find the highest true kernel. A proof of this
conjecture has not been found.
As the cells in the table are scanned we will be making substitutions for the

MACROP parameters as dictated by the proofs of the cells' clauses. It is
important to note that a substitution made to establish the truth of clauses in
a particular cell must be applied to the entire table. When there are alternative
choices about which substitutions to make, we keep a tree of possibilities so
that backtracking can occur if needed.

6. Planning with MACROPS

In the preceding sections, we described the construction of MACROPS and
how they are used to control execution. Now let us consider how a MACROP
can be used by STRIPS during a subsequent planning process.

6.1. Extracting a Relevant Operator Sequence from a MACROP

Recall that the (i + 1)st row of a triangle table (excluding the first cell)
represents the add list, A of the ith head of the plan, i.e. of the
sequence OP1,...,0P1. An n-step plan presents STRIPS with n alternative
add lists, any one of which can be used to reduce a difference encountered
during the normal planning process. STRIPS tests the relevance of each of a
MACROP's add lists in the usual fashion, and the add lists that provide the
greatest reduction in the difference are selected. Often a given set of releNant
clauses will appear in more than one row of the table. In that case only the
lowest-numbered row is selected, since this choice results in the shortest
operator sequence capable of producing the desired clauses.
Suppose that STRIPS selects the ith add list A, i < n. Since this add

list is achieved by applying in sequence we will obviously not
be interested in the application of and will therefore not be
interested in establishing any of the preconditions for these operators. Now
in general, some steps of a plan are needed only to establish preconditions
for subsequent steps. If we lose interest in a tail of a plan, then the relevant
instance of the MACROP need not contain those operators whose sole
purpose is to establish preconditions for the tail. Also, STRIPS will, in
general, have used only some subset of A, in establishing the relevance
of the ith head of the plan. Any of the first i operators that does not add some
clause in this subset or help establish the preconditions. for some operator
that adds a clause in the subset is not needed in the relevant instance of the
MACROP.
Conceptually, then, we can think of a single triangle table as representing a

family of generalized operators. Upon the selection by STRIPS of a relevant
add list, we must extract from this family an economical parameterized
operator achieving the add list. In the following paragraphs, we will explain
by means of an example an editing algorithm for accomplishing this task of
operator extraction.

6.2. The Editing Algorithm

Consider the illustrative triangle table shown in Fig. 7. Each of the numbers
within cells represents a single clause. The circled clauses are "marked" in the
sense described earlier; that is, they are used to prove the precondition of the
operator whose name appears on the same row. A summary of the structure

LEARNING AND EXECUTING R
O
B
O
T
 PLANS

7

3

6

co,

0 11, 12

13

11.12
14. 15

16
co,

0 0 17 15. 16
19, 20

0 12 0 17. IS

19. 70

OP.

OP,

24

24

4 5

21 22

8 12 16 ¶7.18

23

71. 22

16 ". 27.27

17

3

FIG. 7. MACROP with marked clauses.

21

OP.

OP,

16

6

'7A 1973-13

of this plan is shown below, where "I" refers to the initial state and "F" to the
final state:

OPERATOR

PRECONDITION SUPPORT

SUPPLIED BY

PRECONDITION SUPPORT

SUPPLIED TO

OP I OP,
OP2 1 OPs
OP, I 0P7,F
OP, 1,0P1 F
OP, 1,0P2 0P67F
OP6 1,0P0 OP7
OP7 1,0P370P6 F

Suppose now that STRIPS selects A, 6 as the desired add list and, in
particular, selects Clause 16 and Clause 25 as the particular members of the
add list that are relevant to reducing the difference of immediate interest.

These clauses have been indicateU on the table by an asterisk (*). The editing
algorithm proceeds by examining the table to determine what effects of
individual operators are not needed to produce Clauses 16 and 25. First, OP,
is obviously not needed; we can therefore remove all circle marks from Row
7, since those marks indicate the support of the preconditions of OP,. We
now inspect the columns, beginning with Column 6 and going from right to
left, to find the first column with no marks of either kind (circles or asterisks).
Column 4 is the first such column. The absence of marked clauses in Column 4
means that t :buses added by OP, are not needed to reduce the difference
and are not required to prove the pre-condition of any subsequent operator;
hence OP, will not be in the edited operator sequence and we can unmark
all clauses in Row 4. Continuing our right-to-left scan of the columns, we
note that Column 3 contains no marked clauses. (Recall that we have already
unmarked Clause 18.) We therefore delete OP, from the plan and unmark
all clauses in Row 3. Continuing the scan, we note that Column 1 contains
no marked entries (we have already unmarked Clause 11), and therefore we
can delete OP, and the marked entries in Row I.
The result of this editing process is to reduce the original seven-step plan to

the compact three-step plan, {0P2, OP, OP,), whose add list specifically
includes the relevant clauses. The structure of this plan is shown below.

OPERATOR

PRECONDITION SUPPORT PRECONDITION SUPPORT

SUPPLIED BY SUPPLIED TO

OP2 I OPs,F
OPs 1,0P2 0P6,F
OP6 1,0P F

6.3. Use of Edited MACROPS as Relevant Operators

Once an edited MACROP has been constructed, we would like STRIPS to
use it in the same manner as any other operator. We ha% e some latitude
though, in specifying the preconditions of the MACROP. An obvious choice
would be to use the conjunction of the clauses in the left-most column, but
there is a difficulty with this straightforward choice that can be made clear
with the aid of a simple example. Suppose we are currently in a state in which
the first kernel of an edited MACROP—that is, its left-most column—is
false, but suppose further that, say, the third kernel is true. Since the third
kernel is true, the tail of the MACROP beginning with OP3 is immediately
applicable and would produce the desired relevant additions to the model. If
STRIPS were to ignore this opportunity and set up the left-most column of
the MACROP as a subgoal, it would thereby take the proverbial one step
backward to go two steps forward.
This example suggests that we employ a PLANEX scan on the edited table

O
N
I
N
N
Y
l
d
 (
)
N
V
 O
N
I
A
1
0
8
-
1
1
1
3
1
9
0
b
l
d

so that all tails of the relevant MACROP wil: :),! tested for applicability. If
an applicable tail is found, STRIPS applies, in sequence, each operator in
this tail to produce a new planning model. Each operator application is
performed in the usual manner using the add and delete lists of the individual
operators. If the PLANEX scan fails to fine a true kernel, then no tail is
applicable and the conjunction of the marked clauses in the first kernel is set
up as a subgoal to be achieved by STRIPS. Actually, any kernel would
constitute a perfectly good subgoal and, in principle, the disjunction of all the
kernels would be better st: Unfortunately, this disjunction places excessive
demands on both the theorem prover and the STRIPS executive, so we restrict
ourselves to consideration of the first kernel.
We have seen that STRIPS uses a MACROP during planning by extracting

a relevant subsequence of the MACROP's operators, and then including that
subsequence in the new plan being constructed. When the new plan is made
into a MACROP it is often the case that it will contain add lists that are
subsets of add lists in already existing tables. For example, if an entire
existing MACROP is used in the construction of a new plan, and the para-
meter substitutions in the new MACROP correspond to those in the old
MACROP, then each add list in the old MACROP will be a subset of an add
list in the new MACROP. To assist STRIPS in its use of MACROPS, we have
designed a procedure that will remove redundant add lists from consideration
during planning, and in cases where an entire MACROP is contained within
another, will delete the contained MACROP from the system.
Our procedure takes the following action: If every instance of the operator

sequence that is the ith head of some MACROP is also an instance of a
sequence occurring anywhere else in the same or some other MACROP, then
all the add lists in that head (i.e. Rows 2 through i + 1) are disallowed for
consideration by STRIPS.8 For example, consider the following two general-
ized plans:

Plan A :OPA(p1),OPB(pl,p2),OPC(p3),OPD(p3,C1),OPA(p3),OPB(p4,p5)
Plan B: OPC(p6),OPD(p6,C1),OPA(p7),OPF(p6,p7).

Rows 2 and 3 of Plan A are disallowed for consideration as add lists since
every instance of the sequence, OPA(p1),OPB(pl,p2), is also an instance of
the sequence, OPA(p3),OPB(p4,p5), that occurs at the end of Plan A. Rows
2 and 3 of Plan B are disallowed because of the sequence, OPC(p3),OPD-
(p3,C1), that occurs in Plan A. Note that Row 4 of Plan B could not be
disallowed for consideration by Plan A since there are instances of the se-
quence, OPC(p6),OPD(p6,C1),OPA(p7), that are not instances of OPC(p3),
OPD(p3,C1),OPA(p3).

This procedure is applied whenever a new MACROP is added to the
system. It has proved to be quite effective at minimizing the number of
° Note that the first row of a MACROP contains no add clauses.

MACROP add lists that STRIPS must consider during planning. (See
Section 7, for examples.) A difficulty arises in the use of this procedure when
the same operator appears in two MACROPs and the support sets for the
precondition proofs of that operator differ markedly in the two triangle tables.
This can occur, for example, when the precondition is a disjunction of two
wffs and in one case the first disjunct was proven to be true and in the other
case the second disjunct was proven to be true. In those situations the two
occurrences of the operator should not be considered as instances of the same
operator since each occurrence effectively had dif :nt preconditions. A
refinement of our procedure that would include an appropriate comparison
of the support sets could be employed to overcome this difficulty.

7. Experimental Results

The mechanisms we have described for generating and using MACROPS
have been implemented as additions and modifications to the existing STRIPS
and PLANEX systems. In this section we will describe the results of some of
the experiments we have run with the new system. Problems were posed to the
system in the SRI robot's current experimental environment of seven rooms,
eight doors, and several boxes about two feet high. The robot is a mobile
vehicle equipped with touch sensors, a television camera, and a push bar that
allows the robot to push the boxes [4]. A typical state of this experimental
environment is modeled by STRIPS using about 160 axioms.

7.1. Operator Descriptions

The operator descriptions given to STRIPS for these experiments model the
robot's preprogrammed action routines for moving the robot next to a door
in a room, next to a box in a room, to a location in a room, or through a door.
There are also operators that model action routines for pushing a box next to
another box in a room, to a location in a room, or through a door. In addition,
we have included operator descriptions that model fictitious action routines
for opening and closing doors. These descriptions are as follows:

GOTOB(bx) Go to object bx.
Preconditions: TYPE(bx,OBJECT),(3rx)[1NROOM(bx,rx) A INROOM(ROBOT,rx)1
Deletions: AT(ROBOT,S I ,S2),NEXTTO(ROBOT,S I)
Additions: *NEXTTO(ROBOT,bx)

GOTOD(dx) Go to door dr.
Preconditions: TYPE(dr,DOOR),(3 rx)(3 ry)[INROOM(ROBOT,rx) A
CONNECTS(dx,rx,ry)]

Deletions: AT(ROBOT,S I ,S2),NEXTTO(ROBOT,S I)
Additions: •NEXTTO(ROBOT,dr)

GOTOL(x,y) Go to coordinate location (x,y).
Preconditions: (3 rx)RNROOM(ROBOT,rx) A LOCINRODM(x,y,rx)1
Deletions: AT(ROBOT,S I SI),52),NEXTTO(ROBOT,
Additions: *AT(ROBOT,x,y)

LEARNING AND EXECUTING R
O
B
O
T
 P
L
A
N
S

PUSHB(bx,by) Push bx to object by.
Preconditions: TYPE(by,OBJECT),PUSHABLE(bx),NEXTTO(ROBOT,bx),
(3rx)(1NROOM(bx,rx) A INROOM(by,rx)]

Deletions: AT(ROBOT,S1,32),NEXTTO(ROBOT,S 1),AT(bx,S I ,E2),NEXTTO(bx,S 1),
NEXTTO(S1,bx)

Additions: *NEXTTO(bx,dx),NEXTTO(ROBOT,bx) ,

PUSHD(bx,dx) Push bx to door dx.
Preconditions: PUSHABLE(bx),TYPE(dx,DOOR),NEXTTO(ROBOT,bx)
(3 rx)(3 ry)[INROOM(bx,rx) A CONNECTS(dx,rx,ry)]

Deletions: AT(ROBOT,S 1 ,S2),NEXTTO(ROBOT,S1),AT(bx,S 1 ,S2),N EXTTO(bx,S 1),
NEXTTO(S I ,bx)

Additions: •NEXTTO(bx,dx),NEXTTO(ROBOT,bx)

PUSHL(bx,x,y) Push bx to coordinate location (x,Y).
Preconditions: PUSHABLE(bx),NEXTTO(ROBOT,bx),(3rx)LINROOM(ROBOT,rx) A
LOCINROOM(x,y,rx)]

Deletions: AT(ROBOT,S 1,S2),NEXTTO(ROBOT,S 1),AT(bx,S 1,S2),NEXTTO(bx,S 1),
NEXTTO(S1,bx)

Additions: •AT(bx,x,y),NEXTTO(ROBOT,bx)

GOTHRUDR(dx,rx) Go through door dx into room rx.
Preconditions: TYPE(dx,DOOR),STATUS(dx,OPEN),TYPE(rx,ROOM),
NEXTTO(ROBOT,dx) (3ry)[INROOM(ROBOT,ry) A CONNECTS(dx,ry,rx)]

Deletions: AT(ROBOT,S1,32),NEXTTO(ROBOT,S1),INROOM(ROBOT,i1)
Additions: •INROOM(ROBOT,rx)

PUSHTHRUDR(bx,dx,rx) Push bx through door dx into room rx.
Preconditions: PUSHABLE(bx),TYPE(dx,DOOR),STATUS(dx,OPEN),TYPE(rx,
ROOM),NEXTTO(bx,dx),NEXTTO(ROBOT,bx),(3ry)[INROOM(bx,ry)
CONNECFS(dx,ry,rx))

Deletions: AT(ROBOT,S 1 ,S2),NEXTTO(ROBOT, Si),AT(bx,S 1 ,S2),NEXTTO(bx,S I),
NEXT10(1 ,bx),INROOM (ROBOT,S 1),INROOM(bx,S 1)

Additions: •INROOM(bx,rx),INROOM(ROBOT,rx),NEXTTO(ROBOT,bx)

OPEN(dx) Open door dx.
Preconditions: NEXTTO(ROBOT,dx),TYPE(dx,DOOR),STATUS(dx,CLOSED)
Deletions: STATUS(dx,CLOSED)
Additions: *STATUS(dx,OPEN)

CLOSE(dx) Close door dx.
Preconditions: NEXTTO(ROBOT,dx),TYPE(dx,DOOR),STATUS(dx,OPEN)
Deletions: STATUS(dx,OPEN)
Additions: •STATUS(dx,CLOSED)

Note: The addition clauses preceded by an asterisk are the primary additions of the operator.
When STRIPS searches for a relevant operator is considers only these primary addition
clauses.

7.2. Example Problems

7.2.1. SUMMARY. A sequence of five problems was designed to illustrate the
various ways in which MACROPs are used during planning. We show in the
next subsection an aitnotated trace of the system's behaviour for each problem
in the sequence. Each trace is preceded by a diagram of the problem's initial
and final states, and includes the sequence of subgoal generations and

operator applications actually occurring in the STRIPS solution. STRIPS'
attention was directed to the rooms shown in the diagrams by closing the
doors connecting all other rooms.
The plan for the first problem in the sequence pushes two boxes together

and then takes the robot into an adjacent room. The second problem is similar
to the first except that different rooms and different boxes are involved, and
the robot begins in a room adjacent to the room containing the boxes.
STRIPS uses a tail of MACROP1 to get the robot into the room with the
boxes and then uses the entire MACROPI to complete the plan.
The third problem involves taking the robot from one room through a

second room and into a third room, with the added complication that the door
connecting the second and third rooms is closed. STRIPS first decides to use
MACROP2 with the box-pushing sequence edited out and then finds that the
door must be opened; to get the robot next to the closed door, a head of
MACROP2 is selected with the box-pushing sequence again edited out. After
formation of the plan to go to the door and open it, the PLANEX scan
observes that only the final operator of the first relevant instance of MAC-
ROP2 is needed to complete the plan.
The fourth problem requires that three boxes be pushed together, with the

robot beginning in a room adjacent to the room containing the boxes. A
head of MACROP2 is used to get the robot into the room with the boxes and
to push two of them together; the box-pushing sequence of MACROP2 is used
to complete the plan, again with the assistance of the PLANEX scan.
The fifth problem requires the robot to go from one room into a second

room, open a door that leads into a third room, go through the third room
into a fourth room, and then push together two pairs of boxes. The plan,
which is formed by combining all of MACROP4 with all of MACROP3, is
well beyond the range of plans producible by STRIPS without the use of
MACROPs. Note that although MACROP4 was created by lifting a plan
that pushed three boxes together, it has enough generality to handle this form
of a four-box problem. Note also that MACROP1, MACROP3, and
MACROP4 have been recognized as redundant and deleted, so that the net
result of this learning sequence is to add only MACROP2 and MACROP5
to the system.

In Table I we present a table showing the search tree sizes and running
times for the five problems. The problems were run both with and without
the use of MACROPs for comparison. Even when MACROPs were not being
used for planning we include the MACROP production time since PLANEX
needs the MACROP to monitor plan execution. Note that the times and the
search tree sizes are all smaller when MACROPS are used and that the
MACROPs allow longer plans to be formed without necessarily incurring an
exponential increase in planning time.

O
N
I
N
N
Y
l
d
 C
IN

V
O
N
I
A
1
0
9
-
1
A
1
3
1
9
0
E
l
d

TABLE I

Statistics for STRIPS behavior

PROBLEM I PROBLEM 2 PROBLEM 3 PROBLEM 4 PROBLEM 5

Without MA CROPS
Total time (minutes) 3 : 05 9 : 42 7 : 03 14 : 09
Time to produce MACROP 1 : 00 1 : 28 1 : 11 1 : 43
Time to find unlifted plan 2 : 05 8 : 14 5 : 52 12 : 26
Total nodes in search tree 10 33 22 51
Nodes on solution path 9 13 11 15
Operators in plan 4 6 5 7

With MA CROPS
Total time (minutes) 3 : 05 3 : 54 6 : 34 4 : 37 9:13

Time to produce MACROP 1 : 00 1 : 32 1 : 16 1 : 37 3:24

Time to find unlifted plan 2 : 05 2 : 22 5 : 18 3 : 00 5:49

Total nodes in search tree 10 9 14 9 14
Nodes on solution path 9 9 9 9 14
Operators in plan 4 6 5 6 11

STRIPS is written in BBN-LISP and runs as compiled code on a PDP-10 computer under

the TENEX time-sharing system.

STRIPS could not solve Problem 5 without using MACROPs.

7.2.2. ANNOTATED TRACE OF SYSTEM BEHAVIOR FOR EACH EXAMPLE PROBLEM.

Problem 1

RRAYAIRCLX \IRPDP

41b- I

GI : INROOM(ROBOT,RRAM) A NEXTTO(BOX1,BOX2)

GI is the task statement.

G2: Preconditions for PUSHB(80X2,BOX1)

G3: Preconditions for GOTOB(BOX2)

Apply GOTOB(BOX2)
Apply PUSHB(BOX2,BOX1)
G4: Preconditions for GOTHRUDR(par18,RFtAM)
06: Preconditions for GOTOD(DRAMCLK)

05 was the precondition for an operator that did not appear in the
completed plan.

Apply GOTOD(DRAMCLK)
Apply GOTHRUDR(DRAMCLK,RRAM)

Solution

Form MACROP1(par29,par37,par45,par54,par33)

The parameter list for a MACROP contains all the parameters that
occur in the triangle table.

GOTOB(par29)
PUSHB(par29,par37)
GOTOD(par45)
GOTHRUDR(par45,par54)

The generalized plan pushes two boxes together and takes the robot
into an adjacent room, given that the robot and the boxes are initially
all in the same room.

Set first additions row of MACROP1 to 3.

STRIPS will consider only rows numbered 3 and higher as add lists
during planning. Rows 1 and 2 of a triangle table are never considered
as add lists since there are no add clauses in Row 1, and the add clauses
in Row 2 are redundant with respect to the operator description of the
first operator in the MACROP.

Problem 2

RRA/4 \I RCLK \IRFDP

41-
113

GI: INROOM(ROBOT,RPDP) A NEXTTO(BOX2,130X3)

G2:

GI is the task statement.

Preconditions for MACROP1:5(BOX3,BOX2,par3,RPDP,par5)

The notation MACROPI :5 means that Row 5 of MACROP1 is
selected as a relevant add list. MACROP1 is instantiated so that Ross 5
contains the relevant clauses INROOM(ROBOT,RPDP) added by
GOTHRUDR(par3,RPDP) and NEXTTO(BOX2,BOX3) added by
PUSHB(BOX3,BOX2). All four operators in MACROP1 are needed
to produce these relevant clauses. No kernels in the triangle table are
satisfied. A difference consisting of the single clause INROONI
(ROBOT,RCLK) is extracted from the first kernel.

LEARNING AND EXECUTING R
O
B
O
T
 PLANS

G3: Preconditions for MACRON :5(par17,par18,par19,RCLK,par21)

Row 5 of MACROP1 is again selected as a relevant add list. MACROP1
is instantiated so that Row 5 contains the relevant clause 1NROOM-
(ROBOT,RCLK) added by GOTHRUDR(par19,RCLK). Only the
last two operators in MACROPI are needed to produce the relevant
clause.

Kernel 3 satisfied

Kernel 3 is the precondition for the last two operators in MACROP1.

Apply GOTOD(DRAMCLK)
Apply GOTHRUDR(DRAMCLK,RCLK)

Kernel 1 satisfied
Apply GOTOB(BOX3)
Apply PUSHB(BOX3,BOX2)
Apply GOTOD(DPDPCLK)
Apply GOTHRUDR(DPDPCLK,RPDP)

Solution

Form MACROP2(par27,par52,par72,pa191,par111,par38,par40)
GOTOD(par27)
GOTHRUDR(par27,par40)
GOTOB(par52)
PUSHB(par52,par72)
GOTOD(par91)
GOTHRUDR(par91,par111)

Erase MACROP1.

The generalized plan takes the robot from one room into an adjacent
room, pushes two boxes together in the second room, and then takes
the robot into a third room adjacent to the second.

MACROP1 is completely contained in MACROP2.

Set first additions row of MACROP2 to 4.

The first two operators of MACROP2 match the last two operators of
MACROP2.

Problem 3

'IRA/ RCLK

46.

IRPDP

GI: INROOM(ROBOT,RPDP)

G2:

GI is the task statement.

Preconditions for MACROP2 :7(parl ,par2,par3,par4,RPDP,par6,par7)

Row 7 of MACROP2 is selected as a relevant add list. MACROP2 is
instantiated so that Row 7 contains the relevant clause INROOM-
(ROBOT,RPDP) added by GOTHRUDR(par4,RPDP). Only the first,
second, fifth, and sixth operators are needed to produce this relevant
clause. No kernels in the triangle table are satisfied. A difference
consisting of the single clause STATUS(DPDPCLK,OPEN) is ex-
tracted from the first kernel.

G5: Preconditions for OPEN(DPDPCLK)

G9:

After considering two other relevant operators for achiev ing GI,
STRIPS returns to the solution path. OPEN(DPDPCLK) is found to
be a relevant operator and a difference consisting of the single clause
NEXTTO(ROBOT,DPDPCLK) is extracted from the preconditions.

Preconditions for MACROP2:6(par15,parl 6,parl 7,DPDPCLK,parl 9,
par20,par21)

After considering three other relevant operators for achieving G5,
STRIPS selects Row 6 of MACROP2 as a relevant add list. MACROP2
is instantiated so that Row 6 contains the relevant clause NEXTTO-
(ROBOT,DPDPCLK) added by GOTOD(DPDPCLK). Only the
first, second, and fifth operators are needed to produce this relevant
clause.

Kernel 1 satisfied.
Apply GOTOD(DRAMCLK)
Apply GOTHRUDR(DRAMCLK,RCLK)
Apply GOTOD(DPDPCLK)

Apply OPEN(DPDPCLK)
Kernel 6 satisfied

A PLANEX scan is used so that all kernels are checked. Kernel 6 is the
precondition for the final operator in the relevant instance of
MACROP2.

Apply GOTHRUDR(DPDPCLK,RPDP)
Solution

Form MACROP3(par24,par59,par82,par32,par42)
GOTOD(par24)
GOTHRUDR(par24,par42)
GOTOD(par59)
OPEN(par59)
GOTHRUDR(par59,par82)

O
N
I
N
N
V
l
d
 O
N
V
 °
N
I
A
1
0
9
4
0
1
3
1
9
0
1
:
1
d

The generalized plan takes the robot from one room into an adjacent
room, then to a closed door in the second room, opens the closed door,
and then takes the robot through the opened door into a third room.

Set first additions row of MACROP3 to 4.

The first two operators of MACROP3 match the first two operators of
MACROP2.

Problem 4

RRAM RCLK \IMP
II I

GI: NEXTTO(BOXI,B0X2) A NEXTTO(B0X2,B0X3)
GI is the task statement.

G2: Preconditions for MACROP2:5(parl,BOX2,BOXI,par4,par5,par6,par7)

Row 5 of MACROP2 is selected as a relevant add list. MACROP2 is
instantiated so that Row 5 contains the relevant clause NEX1TO-
(BOXI,BOX2) added by PUSHB(BOX2,BOXI). All of the first four
operators in MACROP2 are needed to produce this relevant clause.

Kernel I satisfied
Apply GOTOD(DRAMCLK)
Apply GOTHRUDR(DRAMCLK,RCLK)
Apply GOTOB(BOX2)
Apply PUSHB(BOX2,BOX1)
G3: Preconditions for MACROP2:5(par19,BOX3,BOX2,par22,par23,par24,par25)

Kernel 3 satisfied

Row 5 of MACROP2 is selected as before. The instantiation is so that
Row 5 contains the relevant clause NEXTTO(BOX2,B0X3) added by
PUSHB(BOX3,BOX2). Again all of the first four operators are included
in the relevant instance of MACROP2.

A PLANEX scan is used so that all kernels are checked. Kernel 3 is the
precondition for the third and fourth operators.

Apply GOTOB(BOX3)
Apply PUSHB(BOX3,B0X2)

Solution

Form MA CR OP4(par37,par80,parl 02,par I 23,par134,par57,par59)
GOTOD(par37)
GOTHRUDR(par37,par59)
GOTOB(par80)
PUSHB(par80,parl 02)
GOTOB(par123)
PUSHB(par123,parl 34)

The generalized plan takes the robot from one room into an adjacent

room, pushes one box to a second box, and then pushes*a third box to a

fourth box.

Set first additions row of MACROP2 to 6.

The first 4 operators of MACROP2 match the first 4 operators of
MACROP4.

Set first additions row of MACROP4 to 4.

The first 2 operators of MACROP4 match the last 2 operators of
MACROP2.

Problem 5

RHAL1 RRAM RCLK \1RFDP)

El \I \I \I
I 1

GI: NEXTTO(BOXI,BOX2) A NEXTTO(BOX3,BOX4)

G2:

GI is the task statement.

Preconditions for MACROP4:7(parl 3,BOX2,BOXI,BOX3,BOX4,par I 8,parl 9)

Row 7 of MACROP4 is selected as a relevant add list. MACROP4 is
instantiated so that Row 7 contains the relevant clauses NEXTTO
(BOXI,BOX2) added by PUSHB(BOX2,BOX1) and NEXTTO
(BOX3,BOX4) added by PUSHB(BOX3,BOX4). All six operators in

MACROP4 are needed to produce these relevant clauses. No kernels in

the triangle table are satisfied. A difference consisting of the single

clause INROOM(ROBOT,RCLK) is extracted from the first kernel.

G3: Preconditions for MACROP3:6(par27,par28,RCLK,par30,par31)

Row 6 of MACROP3 is selected as a relevant add list. MACROP3 is

instantiated so that Row 6 contains the relevant clause INROOM
(ROBOT,RCLK) added by GOTHRUDR(par28,RCLK). All five

LEARNING AND EXECUTING R
O
B
O
T
 P
L
A
N
S

operators in MACROP3 are needed to produce this relevant clause.

Kernel 1 satisfied
Apply GOTOD(DRAMHAL)
Apply GOTHRUDR(DRAMHAL,RRAM)
Apply GOTOD(DRAMCLK)
Apply OPEN(DRAMCLK)
Apply GOTHRUDR(DRAMCLK,RCLK)

Kernel 1 satisfied
Apply GOTOD(DPDPCLK)
Apply GOTHRUDR(DPDPCLK,RPDP)

Apply GOTOB(BOX2)
Apply PUSHB(BOX2,BOXI)
Apply GOTOB(BOX3)
Apply PUSHB(BOX3,BOX4)

Solution

Form MACROP5(par44,par87,par151,par208,par237,par265,par294,parl80,par130,
par64,par66)

GOTOD(par44)
GOTHRUDR(par44,par66)
GOTOD(par87)
OPEN(par87)
GOTH RUDR(par87,par 1 30)
GOTOD(parl 51)
GOTHRUDR(par151,parl 80)
GOTOB(par208)
PUSHB(par208,par237)

• GOTOB(par265)
PUSHB(par265,par294)

Erase MACROP3.
Erase MACROP4.

The generalized plan takes the robot from one room into a second
room, opens a door leading to a third room, takes the robot through
the third room into a fourth room, and then pushes together two pairs
of boxes.

MACROP3 and MACROP4 are completely contained in MACROP5.

Set first additions row of MACROP5 to 4.

The first two operators of MACROP5 match the sixth and seventh
operators of MACROP5.

7.3. Further Experiments

In another set of experiments that were run with the new system, the primary

goal was to produce long plans. We ran a sequence of eight problems in our

robot environment that culminated in the production of a 19-operator plan
for fetching three boxes from three different rooms and then pushing the three
boxes together. This final MACROP subsumed the seven earlier ones so that
only one MACROP was retained by the system. Subsequences of the 19-step
MACROP could be used to fetch boxes, push boxes together, move the robot
from room to room, etc.
The experiments we have been discussing show the use of MACROPs

during planning. We have also run experiments with PLANEX to illustrate
the use of MACROPs during plan execution. One such experiment is docu-
mented in a report [4] and film [5] that illustrate how PLANEX monitors
robot task execution in the seven-room experimental environment. One
interesting sequence in this experiment involves the robot attempting to go
from one room through a second room into a third room. After entering the
second room, the robot discovers that a box is blocking the door that leads
into the third room. Since PLANEX is working with a generalized plan, the
difficulty can be overcome by finding a different instance of the plan's first
kernel that is satisfied. This new instantiation of the plan's parameters causes
the robot to be sent from the second room into a fourth room and then into
the target third room.

8. Conclusions

We have presented in considerable detail methods by which a problem-
solving program can "learn" old solutions and use them both to monitor
real-world execution and to aid in the solution of new problems. We view
these methods as representing only a preliminary excursion into an area that,
in the long run, may hold high potential for the design of "intelligent" robots.
Before such potential is realized, however, there are a number of substantial
technical problems to be solved; in this final section we briefly point out a few
of these.

8.1. Abstracting Preconditions

It is a commonplace observation that successful problem solvers (human or
machine) must plan at a level of detail appropriate to the problem at hand.
In typical problem-solving programs, the level of detail is set a priori by
the experimenter when he carefully selects the representations employed.
This situation changes when the problem solver can create its own MAC-
ROPS. Now we have the possibility of creating powerful macro operators
whose specification is at the same level of detail as each component operator.
In terms of our system, we may create a large triangle table whose precon-
ditions (its first kernel) is the conjunction of so many literals that the theorem
prover has little hope of success. What we need is a way of appropriately

O
N
I
N
N
V
l
d
 C
IN
V
O
N
I
A
1
0
9
-
1
1
3
1
8
0
8
d

abstracting the preconditions of a MACROP so that only its "main" pre-

conditions. remain. A plan would first be attempted using these abstract

preconditions; if successful, a subsequent planning process would fill in the

details (and perhaps suggest changes to the abstract plan) as needed. As a

rough example of the sort of process we have in mind, suppose we have a

MACROP that requires the robot to travel through several doors. An abstract

precondition for the MACROP might not contain the requirement that the

doors be open on the supposition that, should they be closed, the robot could

easily open them at the appropriate time. In whatever manner such a scheme

is ultimately implemented, it seems clear that a problem solver will be able to

increase its power with experience only if it can use this experience at an

appropriate level of abstraction.

8.2. Sailing NIACROPS

We discussed previously a method for discarding a MACROP when it is

subsumed by another, more powerful MACROP. In general, any system that

learns plans must also either incorporate a mechanism for forgetting old

plans or else face the danger of being swamped by an ever-increasing reper-

toire of stored plans. One straightforward approach to this problem would be

to keep some statistics on the frequencies with which the various MACROPS

are used, and discard those that fall below some threshold. We have not,

however, experimented with any such mechanisms.

8.3. Other Forms of Learning

The generalization scheme discussed in this paper is but one of many possible

forms of machine learning. Another form of learning that would be inter-
esting to investigate involves reconciling predicted and observed behavior.

Suppose, by way of example, that an operator OP is originally thought to add

Clause C whenever it is applied, but suppose we notice that the action
corresponding to OP consistently fails to add C. We would like the system to
remedy this situation by taking one of three steps: drop C from the add list of

OP, restrict the preconditions of OP to those (if any) that guarantee that C is
added by the action, or change the actual action routine so that it does in fact
behave as originally advertised. While we offer no algorithms for accomplish-
ing these forms of learning, it is interesting to note that the problem itself
arises only when we deal with real, as opposed to simulated, robot systems.
It is the occurrence of problems of this sort that persuades us of the contin-
uing interest and importance of robot problem solving.

REFERENCES

1. Fikes, R. E. and Nilsson, N. J. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(1971), 189-208.

2. Fikes, R. E. Monitored execution of robot plans produced by STRIPS. Proc. IFIP
Congress 71, Ljubljana, Yugoslavia (August 23-28, 1971).

3. Garvey, T. D. and Kling, R. E. User's Guide to QA3.5 Question-Answering System.
Technical Note 15, Artificial Intelligence Group, Stanford Research Institute, Menlo
Park, California (December 1969).

4. Raphael, B. et al. Research and Applications—Artificial Intelligence. Final Report,
Contract NASW-2164, Stanford Research Institute, Menlo Park, California (December
1971).

5. Hart, P. E. and Nilsson, N. J. Shakey: Experiments in Robot Planning and Learning.
Film produced at Stanford Research Institute, Menlo Park, California (1972).

6, Ernst, G. and Nev.ell, A. GPS: A Case Study in Generality and Problem Solving. ACM
Monograph Set ies. Academic Press, New York, New York, 1969.

LEARNING AND EXECUTING R
O
B
O
T
 PLANS

