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Abstract

The problem we consider in this paper is that of discovering formal rules
which will enable us to decide when a question posed in English can be
answered on the basis of one or more declarative English sentences. To
illustrate how this may be done in very simple cases we give rules which
translate certain declarative sentences and questions involving the quantifiers
'some', 'every', 'any', and 'no' into a modified first-order predicate calculus,
and answer the questions by comparing their translated forms with those of
the declaratives. We suggest that in order to capture the meanings of more
complex sentences it will be necessary to go beyond the first-order predicate
calculus, to a notation in which the scope of words other than quantifiers
and negations is clearly indicated. We conclude by describing a notational
form for connected sentences, which seems to be a natural extension of
Chomsky's 'deep structures'.

INTRODUCTION

In this paper we shall consider the problem of when an English sentence, or
a series of sentences, provides enough information to answer a question, also
posed in English.

John kissed Mary (1)
Did John kiss Mary? (2)

The sentence (1) obviously enables the question (2) to be answered in the
affirmative, and transformational grammar partly accounts for this by
giving formal criteria by which a declarative sentence and a question can be
recognized as having the same underlying structure. But transformational
grammar does not explain why (3) and (4) provide an affirmative answer
to (5) whereas (3) and (6) fail to provide an answer to this question.

John saw a flying saucer (3)
Mary saw it too (4)
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Did John see the flying saucer that Mary saw? (5)
Mary saw one too (6)

Neither does transformational grammar concern itself with the notion of
logical consequence, whereas we want to understand why 'Socrates is a man.
All men are mortal.' enables us to answer the question 'Is Socrates mortal ?'.

Various systems of formal logic raise an analogous problem — at least for
'yes /no' questions — within their own languages, and solve it by formalizing
the concept of logical consequence. Thus in the first-order predicate calculus,
we could say that a set of sentences E ̀contains enough information to answer
the question posed by' the sentence 0 if either 4) or its negation is derivable
from E. The formalization may be either in 'syntactic' terms, involving deriva-
tions, or in 'semantic' terms, which appeal to the interpretation of sentences
in a particular set theory; and in many cases we may not have an algorithm
which will enable us to decide whether E answers 4). But at least there is a
definition of what it means for E to answer 4) ; we know what task there is no
algorithm for.

It would seem that we might make substantial progress if we could translate
English into the language of some logical system, and there is a widespread
feeling that such a translation ought to be possible, for at least a large and
important subset of English. Indeed, the applicability of theorems in mathe-
matical logic to the rest of mathematics depends largely on the assumption
that mathematics could, if necessary, be conducted in the language of first-
order predicate calculus. And, indeed, people familiar with logical notations —
and with English — can become very adept at this sort of translation. What
they cannot do, however, is to give a formal description of how they go about
it. Quine (1959), after outlining some useful hints for his reader, says: . in
the main we must rely on our good sense of everyday idiom for a sympathetic
understanding of the statement, and then re-think the whole in logical
symbols'.
The problem of translating English into another representation, one in

which we hope to be able to formalize the concept of logical consequence, is
our main concern in what follows. We have been taking a 'syntactic' approach
to this problem; our aim is to operate directly on the strings of words
presented, rather than on our 'understanding' of them. While we do not
yet have a fully-specified candidate for the representation into which we
should translate, the need for one which can be related to English by formal
rules has led us to structures very similar to those of the transformational
grammarian.

SOME ENGLISH QUANTIFIERS

We begin by describing a method for translating a modest subset of English
into a slightly modified first-order predicate calculus — modified just enough
to provide a representation for questions. We can then go on to investigate
the difficulties which arise when we attempt to treat more of the language;
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not the least of these being that the first-order predicate calculus is not
adequate to express the whole range of meanings of English sentences.
The statements and questions which we shall consider now may be exempli-

fied by examples (7) to (12):
Not everyone met John. (7)
Someone didn't meet everybody. (8)
No one told anybody anything. (9)
Did anyone meet John? (10)
Did anyone meet everybody? (11)
Did anyone tell anybody anything? (12)

More precisely, we consider
A. Declarative sentences

D-+ NP' (didn't) V(NP) (NP)
containing a noun phrase, possibly followed by 'didn't', followed by a verb,
possibly followed by one or two noun phrases.
B. Questions begining with the word 'Did'

./--+ Did NPV(NP) (NP)?
followed by a noun phrase, then a verb, then possibly one or two noun
phrases.
A noun phrase is either a proper name, or a word formed by combining

one of the quantifiers 'some', 'any', 'every',-and ̀no' with one of the variables
'one', 'body', and 'thing':

some
one

Np_tf 
QX every 
John any
1 X-01 body

thing
no

Furthermore, the first noun phrase of a declarative may be 'not every X':
(NP

NP-.<
Not every X

Let us emphasize that we are not claiming that every string of words
produced by these rules is an English sentence (e.g., Anybody saw John).
It is just that we are restricting our attention to those sentences which can be
so produced.
We would like to have rules which transcribe such declarative sentences

into predicate calculus formulae, such as
VxMxj (7')

3x— VyMxy (8')
VyVz— 3xTxyz, (9')

where Mxy stands for ̀ x met y' and Txyz stands for ̀ x told y z'. We would
also like, for reasons which will become apparent, rules for transcribing
questions into modified formulae of the type:
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Vx?Mxj (10')

Vx?VyMxy (11')

VxVyVz ?Txyz. (12')

In every formula there appears a matrix consisting of a predicate symbol
corresponding to the verb, followed by a string of variables and constants;
these are understood to correspond to the `variables' and proper nouns
appearing in the sentence, and in the same order. The matrix will be preceded
by a string of quantifiers and negations — and possibly a question mark;
we have found that the transcription rules which appear below produce
unique and acceptable orderings of these symbols from unambiguous sen-
tences of the specified type.

If, as we hope to demonstrate, there is any unique transcription of 'some',
it must surely be into an existential 3 rather than a universal quantifier; and
`every' must surely become a universal quantifier, V. ̀ No one did so-and-so'
seems to be the direct contradiction of ̀Someone did so-and-so', so that there
is a prima facie case for transcribing ̀ no' as 3. The word ̀ any' is much
trickier to deal with. In sentences of the type under consideration it can only
appear after a ̀not', a ̀no', or a 'did'. ̀ Anyone met John', and ̀anyone didn't
meet John' are not English, although we can say ̀ John didn't meet anyone'.
One could take the line that ̀ John didn't meet anyone' should be transcribed
as — 3xMjx (like ̀ John met no-one'). This would be in accord with the
approach of those linguists who view ̀any' as a variant of ̀some' which appears
in `negative contexts'. See, for instance, Klima (1964). It is possible to
write a set of rules which transcribe ̀ any' as '3' and which are as good for
the purpose at hand as our rules which follow. However, the fact that ̀ any'
behaves in other connections as a universal quantifier (`Anyone can do that')
leads us to prefer the transcription Vx -,Mjx in which ̀ any' becomes a uni-
versal quantifier immediately preceding the ` '; Quine (1960, p. 139),
among others, discusses the behaviour of ̀ any' viewed as a universal
quantifier.
The following rules enable us to construct the string of quantifiers,

negations (and possibly a question mark), which are to precede the matrix
in the transcription of an English sentence of the specified type.
(a) We define a ̀transcription function' T which takes occurrences of words
into occurrences of logical symbols:

`not'

`didn'ef

`some' —03

`every' -4V

`any' —0V

`no' —--3

`did' —0?
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(b) If an occurrence of a quantifier Q precedes an occurrence of 'not' or ̀ no'
then T(Q) must precede T(not) or T(no).
(c) T(any) must directly dominate T(not) or T(no) or T(did), for some
occurrence of 'not', ̀ no' or 'did' which precedes the occurrence of 'any'.
(d) If an occurrence of 'not' or ̀no' or 'did' precedes an occurrence of 'every',
then T(not) or T(no) or T(did) precedes T(every).
(e) If an occurrence of 'not' or ̀ no' precedes an occurrence of 'some', then
T(not) or T(no) must not directly dominate T(some).
(f) ? must precede any occurrence of 3.
(g) The transcriptions of occurrences of 'not', or 'did' must appear in the
same order as the occurrences themselves.
When we say that a symbol c directly dominates a symbol r we mean that

a precedes T and either there are no intervening symbols (not counting
variables) or that all the symbols in between are identical with each other,
and with either a or T.
The above rules were in fact used to generate the formulae (7') to (12')

from the sentences (7) to (12). Confining our attention to declarative
sentences for the moment, we claim that any unambiguous sentence from
our subset of English can be transcribed in exactly one way without violating
(b) to (e), and that this transcription represents the meaning of the sentence.
For an ambiguous sentence, (b) to (e) will allow two or more transcriptions,
corresponding to the various interpretations of the sentence. Consider,
for example, the sentence (13)

Not everyone saw somebody. (13)

The V representing 'everyone' must follow the representing 'not', by rule
(d), but the only restriction on the placing of the 9 representing 'somebody'
is that it should not immediately succeed the —, which would then directly
dominate it [rule (e)]. Two readings are therefore possible:

—Vx3ySxy (13')

3y—VxSxy (13")

either of which is a possible interpretation. (Actually the former, in which
the order of the quantifiers is the same in the formula as in the sentence, is
the preferred reading, and we believe this to be true of ambiguous sentences
in general.) Or consider (14):

Everyone didn't see somebody. (14)

Here rule (b) dictates that Vx must precede and by rule (e) 3y must not
immediately follow — . This leaves open the two interpretations (14') and
(14")

3.0x— Sxy (14')

Vx3y-/Sxy (14")

(of which the latter is perhaps preferable). But one could also interpret the
sentence in either sense of (13), and this suggests that rule (b) might be
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relaxed by adding 'unless V is "every" and is the first word of the sentence'.
Whether one allows this exception or not is, of course, a matter of personal
linguistic style.
There are a number of 'sentences' produced by our little grammar, including

double-negative sentences and negative questions, which sound a bit strange,
and which some people might reject as not belonging to English; for example,
'Everybody gave nobody something'. We do not wish to argue here over
whether these 'really' are sentences. In as far as such sentences are amenable
to interpretation, our rules yield their interpretations, with one exception,
namely (15)

Not everyone met anybody, (15)
which is, so it seems, interpretable as either (15') or (15"), or both:

Vy—VxMxy (15')
-,Vx3yMxy (15")

Our rules predict only the former reading. If we had written them to
transcribe 'any' as 3, we would have got only the latter. Together with a
number of other examples, this suggests that the proper treatment of 'any!
might be to write it either as an existential quantifier inside the scope of a
'negative word' or as a universal quantifier outside the scope. (E.g., 'Few
students solved any of the problems' can mean either that, given any problem,
few students solved it, or that there were few students who did any problem-
solving. )

Sentences involving more than one negation also fall into the 'marginal'
category. An interesting case is

No one didn't see anybody (16)
which according to rules (b) and (c) may be written as either

Vy 3x -,Sxy (16')
or

3xVy—Sxy. (16")

But if more than one occurrence of 'not' or 'no' precedes an occurrence of
any, the preferred interpretation seems to be that in which T(any) directly
dominates the transcription of the 'not' or 'no' to which it is closest.
In general our rules interpret double-negative sentences in the 'proper'

rather than the 'vulgar' fashion; for example, they interpret 'Nobody saw
nothing' as a paraphrase of 'Everybody saw something' rather than 'Nobody
saw anything'.
Our transcription of a question gives a predicate calculus formula with a

?' in its prenex. To every such formula there corresponds another, in which
the ?' is replaced by a ', and which can be obtained by transcription of a
negative declarative sentence. .

Consider, for example, the question (17):

Did John tell anyone everything? (17)
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which our rules transcribe into

Vx?Vy (John told x y) (17')

Replacement of'?' by ' in (17) gives (18')

Vx— Vy (John told x y) (18')

which is the transcription of

John didn't tell anyone everything. (18)

On the basis of (18) we would undoubtedly wish to reply ̀ no' to the
question (17). So if a question differs from a (single-negative) declarative
only by the presence of ?' rather than —' in its transcription, we can
answer ̀ no' to the question on the basis of the declarative. More generally,
we shall obtain a ̀no' answer if a declarative is available from which can be
deduced the negative formula which matches the question. Thus in the
above situation we might have been told (19)

• John told no one everything (19)

i.e., 3xVy (John told x y) (19')

This implies (18'), so on the basis of (19) we could answer (17) in the
negative.
To obtain a 'yes' answer to a question we may proceed by erasing the ?'

and converting any universal quantifiers which precede it into existential
quantifiers. The answer is 'yes' if the resulting declarative formula is available,
or follows logically from other available-formulae. Thus the question (17):

Did John tell anyone everything? (17)

i.e., Vx ?Vy (John told x y) (17')

is answered 'yes' if the formula

3xVy (John told x y) (20')

is available, as it is if we have been told (20)

John told someone everything. (20)

Given this way of interpreting questions, we wish to make the same claims
about the way in which our rules operate on ambiguous questions as we made
about the way they operate on ambiguous declaratives. There is one addi-
tional point, however, relating to questions containing negations. If we were
to ask someone 'Did no one meet anybody?' and he were to answer simply
'yes' it would not be clear whether he meant, 'Yes, no one met anybody', or
'Yes, someone met somebody'. For this reason, we might not want to give
`yes' and 'no' answers to questions containing negations, but the procedure
of replacing the '?' with a —' or erasing it still indicates what information
the questioner has asked for.

EXTENSIONS

Plainly, the only interesting thing that this translation procedure purports to
do is to get the order of the prenex right. Keeping this in mind, we can see
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that there will be a number of ways of enlarging the class of sentences treated
without seriously altering our rules. First of all, we can introduce noun
-phrases consisting of 'the' followed by a noun, and treat these in the same way
as we treat proper nouns. Slightly more ambitiously, we could let ordinary
nouns appear in the places where 'variable' words appear, and then instead
of writing ordinary quantifiers, we would write ̀ relativized quantifiers', in
the sense of Tarski, Mostowski and Robinson (1953), (Vxman), ( 3yDog).

Formulae with relativized quantifiers could later be converted to ordinary
formulae, if this seemed convenient, by the standard method of rewriting
(Vxman)tfr as (Vx)(Man(x)-4) and (3y...),k as ( 3y) (Dog (y) tp). This
same trick can be used to represent sentences which have relative clauses

• attached to nouns, for example, 'Every man that I know is here', putting the
whole relative clause inside the relativized quantifier. This will work as long
as no quantifiers appear inside the relative clause itself. If quantifiers do
appear inside a relative clause the situation may become more complicated.
To begin with, we must decide whether the quantifiers in a relative clause

• should come into the prenex of the main formula or stay with the clause.
Then, how do we account for 'Everyone who met anyone enjoyed the party!,
where there is no negation present, and why is there no sentence 'Someone
who met anyone enjoyed the party'?
The failure of these rules to handle relative clause sentences actually points

to a more general failure to cope with sentences having any subordinate
clauses at all. But for simple sentences, those without subordinate clauses, the
rules do get quantifier order right, even if the sentences are, say, passives, or
involve a preposition, as in 'No one gave anything' to everybody'.

GRAMMAR AND SCOPE

If we are to take advantage of this, and extend our rules so as to cover more
than simple active sentences, we should introduce rules relating 'active' and
'passive' matrices in our formulae. The most sensible way to do this would
. appear to be to retain the actual words, rather than introduce constants and
predicate symbols, and then use grammatical transformations. Of course,
these transformations are not properly stated in terms just of strings of
words, but rather in terms Of strings with their grammatical structure
Indicated.' (That is, if we view a transformation as an instruction to do
something, it might be an instruction to move, say, a noun phrase to the end
of the sentence, and in some situations this would amount to moving the
word 'John', in other cases,'the word But a grammar would never have
an explicit instruction 'Move the word "John" to the end of the sentence'.
Thus we must not only keep the words of the sentence, but indicate their
structure as well, for example, indicate that 'John' is a noun phrase.)
The structure of a sentence is normally expressed in 'tree' form, and

we wish to adopt this 'form. (Figure 1 represents a conventional parsing
..tree.)
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NP VP

/\
V NP

John saw Bill

Figure 1

There are a number of ways in which the concept of quantifier scope might
be incorporated into syntactic trees. We do not want to discuss the merits of
particular ways here, but simply note that some device must be adopted which
will indicate which quantifiers fall within the scopes of which others.
In fact, it will be necessary to indicate the scopes of some other words

besides quantifiers. 'Not' certainly, and also some verbs. There is, for instance,
the notorious sentence:

Mary wants to marry a Norwegian. (21)

This is ambiguous, one reading being that Mary has a particular man in mind,
and the other that she does not. We think that the best way of expressing
the difference is to say that in the latter case, the existential quantifier falls
within the scope of the verb 'want', while in the former case it does not.
A proposal to this effect appears in Bach (1969). This represents an extension
of predicate calculus, where quantifiers cannot appear within the arguments
of predicate symbols, but notice that the interpretation on which there is no
particular Norwegian does not have a natural predicate calculus representa-
tion.

It is, of course, difficult to assess the rightness or wrongness of such a
notational device unless we can point out some consequences of adopting it.
One consequence is that we have two ways of representing a sentence which
has two different meanings, and this is desirable, but there are surely many
other ways of achieving it.

Earlier in the paper we introduced a new bit of notation, the question mark
in the modified predicate calculus, and justified it in two ways. We displayed
rules linking it with English and we gave rules for manipulating it which
produced appropriate 'yes' and 'no' answers. We are not prepared, at this
point, to do either of these things for the present 'scope' notation, but we
can produce some justification for it beyond saying that it 'feels right'. This
is that the notation partitions existentially-quantified variables according to
the verbs within whose scope their quantifiers fall, and English makes a
similar partition which shows itself when we try to make further references
to these variables, using pronouns such as 'he' or 'it'. Notice that the question
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'How tall is he?' as a reply to (21) is only appropriate if we understand (21)

as 'There is a Norwegian that Mary wants to marry'. Otherwise we have to

say something like 'How tall does she want him to be?' In general, we will

not be able to use 'he' or 'it' to refer to a variable whose quantifier falls

within the scope of a verb without repeating the verb, or at least using a

modal or subjunctive construction Now tall should he be?') to indicate

that the referent does not exist 'in reality' but only within some understood

context such as 'What Mary wants'. Things which 'really exist' are those

whose existential quantifiers do not fall within the scope of any other

operator, and only they can be directly referred to as 'he' or 'it'. Further

discussion along these lines appears in Karttunen (1970).

BANYANS

Supposing that we have a case where a pronoun in one sentence makes

reference to an object introduced in a previous sentence, we must be able

to express this in our notation. We have decided to do it by letting the trees

representing the two sentences share the node representing the object. Thus,

John saw a flying saucer. Mary saw it, too. (22)

would be represented by linked trees which (omitting details) would look

something like (23).

John saw x was flying
saucer

(23)

But 'John saw a flying saucer; Mary saw one too.' would receive the different

representation shown in (24).

John saw iv was flying
saucer

Mary saw
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We have adopted the word 'banyan' for such sets of linked trees.
Using these banyans we can see a way of generalizing our question-

answering procedure to more than 'yes-no' questions. The procedure
described for predicate calculus, when transferred to trees, amounts to trying
to find in the information store a tree which corresponds exactly to the
question except for the question mark itself. The answer is then determined
by what on the information tree corresponds to the question mark on the
question tree. Thus (25) represents a situation in which we get the answer
'no'.

not

John saw Mary John saw Mary (25)

Now we can do essentially the same thing to answer 'who-what-where'-type
questions if we replace the 'question word' with a question mark. If we do
this, as in (26), the information 'John saw Mary' will provide the answer
'Mary' to the question 'Who did John see?'

Information:

Question:

A

John saw Mary.

John saw . (26)

Of course, in the predicate calculus case, we did not actually have to find
one of the two sentences corresponding to the question, but just infer one of
these sentences from the given information. The same will be true here, if
we introduce rules, corresponding to axioms of modal logic, which allow us
to deduce trees from one another. In saying this we are not, however, claiming
that any existing logical system will prove adequate for elucidating completely
the semantics of natural language.
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