
20

Analysis of Curved Line Drawings Using

Context and Global Information

A. Guzman
Department of Machine Intelligence and Perception

University of Edinburgh

Abstract

We describe the analysis of visual scenes consisting of black on white draw-
ings formed with curved lines, depicting familiar objects and forms: houses,
trees, persons, and so on; for instance, drawings found in coloring books.
The goal of such analysis is to recognize (by computer) such forms and

shapes when present in the input scene; that is, to name (correctly) as many
parts of the scene as possible: finger, hand, girl, dance, and so on. Complica-
tions occur because each input scene contains several such objects, partially
occluding each other and in varying degrees of orientation, size, and so on.
The analysis of these line drawings is an instance of 'the context problem',

which can be stated as 'given that a set (a scene) is formed by components
that locally (by their shape) are ambiguous, because each shape allows a
component to have one of several possible values (a circle can be sun, ball,
eye, hole) or meanings, can we make use of context information stated in the
form of models, in order to single out for each component a value in such
manner that the whole set (scene) is consistent or makes global sense?'
Thus, shape drastically limits the values that a component could have, and

further disambiguation is possible only by using global information (derived
from several components and their inter-relations or inter-connections) under
the assumption that the scene as a whole is meaningful.

This paper proposes a way to solve 'the context problem' in the paradigm
of coloring book drawings.
We have not implemented this approach; indeed, a purpose of this paper

is to collect criticisms and suggestions.

INTRODUCTION

1.1 Statement of the problem

An input picture is read into a computer. We would like to analyze it.

325

APPROACHES FOR PICTURE ANALYSIS

1.1.1 The input picture

The input picture consists of a line drawing (black curved thin lines on white

paper) containing familiar objects [figure 1(a)]; one could think of drawings

in coloring books for children. The objects forming the picture should be

drawn correctly and accurately: no intentional distortions, caricatures, or

humanizations of animals (figure 2) will be allowed.

(a)

(b)

•••

v. • •

(c)

bucket

rope

handle

•••• ••

p.
. •.
.?••• •

••

• •

.....

.

• • •

• ••

.• • „ ..•,•

Figure 1. (a) typical input scene; (b) initial representation of scene in the memory;

(c) showing singular points heavily marked; (d) description of objects present in the

scene.

326

GUZ MAN

Figure 2. Line drawings containing distortions, caricatures, comic strips, humanized
animals, and so on, will not be accepted.

Thus, it can be said that the class of input pictures we want to analyze is
that found in coloring books, except distortions.

We could think of a person looking at the input data [figures 1(a) or 1(b)]

and saying: there is a straight line from point (30, 40) to point (67, —18.5),

two curved lines above that big zig-zag line, which runs from point (30, 15)

to

Representation in the machine. The input picture [figure 1(a)] is stored initially

in the memory of the computer as a collection of black points (specified by

their two-dimensional coordinates) closely spaced along each black line

[figure 1(b)].

We will assume that:

(a) The points are uniformly spaced along the lines of the drawing. Thus,

a. .
..•

(b) Spacing between points is close enough to keep necessary structure and

form details. That is, we will not worry about resolution, quantization, and

so on. Alternative assumptions could be employed (but they are not).

1.1.2 The result or output

The desired output is a description of the object constituents of the scene.

That is, names are found for each region or part of the scene. We could think

327

APPROACHES FOR PICTURE ANALYSIS

of a person looking at the drawing and saying: there is a tree there, a big

rock, and a boy, an armadillo behind that coconut tree, with two mimsy
borogoves. . . .
For instance, for the scene as depicted in figure 1 (b) the result is as

depicted in figure 1(d).

1.1.3 The context problem

The problem we are trying to solve is the Context Problem, which can be
stated in general words as
'given that a set (a scene) is formed by components that locally (by their
shape) are ambiguous, because they can have one of several possible
values (a circle =sun, ball, eye, hole) or meanings, can we make use of
context information (nose, eyes, mouth, occurs often) stated in the form of
models* in order to assign to each component a value such that the whole
set (scene) is consistent or makes global sense?'

By analyzing each component, we come to several possible interpretations of
such component, and further disambiguation is possible only by using
global information (information derived from several components, or by
the inter-connection or inter-relation between two or more components),
under the assumption that the scene as a whole 'makes global sense' or is
'consistent'.

1.1.4 Example

By local analysis (by observing the shape of each of the following regions)
we conclude that certain shapes can be interpreted only as certain objects
(see figure 3). (For instance, the shape of an oblong suggests as reasonable
for it the names, stick, box, arm, leg, handle, but suggests as unreasonable the
names, sun, mouth, horses.) The shape of an object drastically limits the
things that it could be.

„.....■■•■••••

Figure 3

stick or
box or
arm or
leg or
handle

hand
or
tail ;
or.
hair

shoe or
metallic part
(of ax, car, etc)
or
handle

Also, we have information that the combinations shown in figure 4
(called models) are usual, that they occur with frequency.

If we use the above knowledge or information to analyze the scene, as
shown in figure 5, the local shape of each region allows the interpretation in
roman lettering. Thus, we have several reasonable values for each part of
our scene.

* By model we mean a generalized description of an object or a class of objects, with
certain parameters left unspecified.

328

linferior
extremity

Figure 4

door =

ax =-

next I

superior
extremity

next

next

I =

az)

in

leg

next

shoe
box ext

flex.

box

GUZMAN

box —.IAN— handle
in

next

stick

= next

metallic
part

C=I next
arm next hand

Now, by taking into account the models door, ax, and so on, we further
find the interpretations in italic lettering in figure 5. That is to say, the models
have suggested that

box or stick or arm next hand or tail or hair

or leg or handle

should be

arm plus hand

which is a superior extremity (an instance of something commonly found in
our scenes), while discarding interpretations such as

box plus tail

which, although consistent with the individual shapes of its regions, are not
suggested or are not in agreement with the models used.

Also, in

stick metallicpart ax

or plus or equals or

leg shoe inferior extremity

we have still not decided between ax and inferior extremity; further dis-
ambiguation could be done by

(1) introducing a shape difference between shoe and metallic part (that is,
drawing them more accurately so that their shapes will be different), or
between stick and leg; or by

(2) introducing additional context information by introducing the additional
models shown in figure 6.

329

APPROACHES FOR PICTURE ANALYSIS

Figure 5

a
x
 o
r
in
fe
ri
or
 e
xt
r

1.2 An example from natural language

To translate a sentence to a different language, it is necessary to disambiguat
e

it by finding the precise meaning of each word.

Almost every word has more than one meaning:

{KICKI —to hit with feet,...

KICK KICK2 — emotion obtained from drugs,...

IBALL1 —formal dance

BALL BALL2— sphere.
BALL3—...

330

4„

Figure 6

-...

=

.. ■ ,-, E
o ..se.

x.— .1.)

1-4

II

II

II

II

GUZMAN

That is, the 'shape' of the word (KICK begins with K, followed by i,.

restricts its meaning to KIcK1 or KicK2.
With the help of the shape, the sentence (or scene)

THE BOYS KICK THE BALL

becomes
THE BOYS KICK! THE BALL!

or KicK2 or BALL2
or BALL3

331

APPROACHES FOR PICTURE ANALYSIS

We also have the models

`SOCCER-ACTIVITY'=KICK1 acts upon BALL2;

'HOW-TO-KICK'=KICK1 uses sHoEs3

'D AN CING'=SHOES3 necessary for BALL1

mum c4 necessary for BALL 1

`DRUGGING'=KICK2 uses DRUG2

Thus these models restrict our choices in the sentence to the consistent

assignment

THE BOYS KICK THE BALL

THE BOYS KICK1 THE BALL2

That is, the models have rejected as inconsistent (or not suggested by the

models) the interpretation or assignment

THE BOYS KICK2 THE BALL2

although the meaning of the words according to their shape is satisfied.

Note. The models are specified in terms of relations* among the parts; these
will also change from one context problem to the next (figure 7).

BOY THE

acts

what adjective
H TS)_BALL RED

relations are written

in italics.

Figure 7. Models and relations are different for different paradigms of Context
Problems.

1.3 General description of the method

Given a scene of which we wish to make an interpretation consistent with a

given set of models, we need:

(1) To encode the scene in a form more suitable for shape comparison and

extraction or relations to be used for context analysis.

(2) To describe the models necessary for the same purpose.

(3) To analyze the encoded scene against the descriptions of the models, in

order to find the assignment of values to parts of the scene which best agree

with the models and the relations associated to them.

We proceed to give here a brief explanation of each part, while the rest of

this paper will give the pertinent details.

* We will have both relations such as (next leg, foot)=True, and quasi-relations such
as (thin rectangle)=0.7. It is also a good idea to have degrees of nearness, of contain-
ment, and so on, as used by Barrow and Popplestone (1971).

332

GUZMAN

1.3.1 Encoding procedure

(1) Find singular points
(2) Give to each line a name with a direction
(3) Encode each directed line
(4) Encode each region as a set of lines (take care of regions with trees
inside).
(5) To save code, encode special regions and lines: wiggly lines, sticks, and
so on.

1.3.2 Model description

(1) Describe each model in terms of metaregions (model regions) or lines
(metalines) and relations among them, as shown in figure 8 (take care of
size and relative orientation among parts of the model.) A metaregion could
have one of several values from a small set, for instance, metaregion R1=

could be box, arm, handle, stick, leg; this set is known for each

metaregion, but the shape of the metaregion is unable to distinguish the
exact value of that metaregion, context being necessary.

1 I

Figure 8

(2)
RI

Iabove = above;

(LD R2

R7 R8

= R3 R4

R5

R6

(2) Encode each metaregion and each metaline making use of the encoding
procedure of section 1.3.1.

1.3.3 Analysis

To analyze a scene, proceed as follows (execute the following algorithms or
programs):

(1) Encode scene. When this is finished, we have each region of the scene
encoded. Inter-relations between them can be derived, but are not derived yet.
Note that we could derive now all relations, like Evans (1970) does, but we
choose not to do it because there are too many.

(2) Describe models. When this is finished, we have each metaregion and
metaline of the models properly described (encoded). The problem now is
how to determine what regions of the scene match with what metaregions
(and metalines) according, to shape. In principle, we could test all pairs
(metaregion, region) to see if they match. Too inefficient. Heuristics needed
(or a better way) described below.

333

APPROACHES FOR PICTURE ANALYSIS

Take care of regions that are separated:

We do this by describing them counterclockwise, just as in Guzman (1971)
the occluded case for models matching with polyhedra.

(3) Match regions to metaregions. Find for each region of the scene the
metaregion of closest shape. In this way, we find for each region of the scene
the small set of values allowed by its shape.
How do we implement this? (a) For each region and each metaregion, find

a vector of 'cheap' features or properties, and use this vector in a 'plausible
move generator' which suggests pairs (metaregion, region) with a good
chance of matching. (b) Final comparison is done using the encoded descrip-
tions of the lines of the boundary of the region against the encoded descrip-
tions of the metalines of the boundary of the metaregion; that is, they match
if congruent.

(4) Use models to find a unique assignment of values to regions. Given a
metaregion, find which models possess it; pick one and see the requirements
that the context imposes in neighboring and related regions; see if these are
satisfied in scene. Choose a different model if not satisfied.

2. ENCODING PROCEDURE

We have exposed in section 1 the general method to use for analysis of a
scene; it begins by encoding the scene, which at this moment is a collection of
closely-spaced points along lines [figure 1(b)], in a form suitable for further
processing.
The encoding procedure consists of the following steps:

(1) find singular points;
(2) give to each line a name with a direction;
(3) encode each directed line;
(4) encode each region as a set of lines;
(5) to save code, encode special regions and lines.

The goal is to convert the scene to some string of characters (its description);
models are also capable of being described in this way (and we will do so
later).
We consider a scene as formed by several regions (although lines 'standing

alone' are allowed in the description when they cannot be treated as part of a
region. Details are given in section 2.4) which in turn are formed by curved
lines, which are described in a manner independent of their size, orientation,
and position, that is, pertaining only to their shape, plus additional informa-
tion about the size, orientation, and position of each line in the scene.
The main part (3) of the encoding procedure thus deals with the encoding

of lines. But we have to find these lines first [parts (1) and (2)].
Shape of a curve. Two curves have the same shape if they can be made
congruent by (a) a translation of the origin; (b) a rotation of the axes; and
(c) a dilation of the axes, where both axes get expanded the same amount.

334

GUZMAN

Two curves have the same shape (alternative definition) if the function
that gives the radius of curvature as a function of s', the normalized distance
along the curve (s'= [s, the true distance along the curve] / [max 4), is the
same for both.

2.1 Find singular points

A singular point possesses several values for the slopes of the line (s) im-
pinging in it; it corresponds roughly to the notion of vertex. We also consider
the end points of single lines as singular points as shown in figure 9. For
instance, figure 1(c) shows the singular points of the diagram.

Two or more lines meeting
at one point, with different
slopes

•S

NS

The end point An isolated
of a line point

Figure 9. Singular points (5). Points marked with N are not singular points, but
normal points.

Since our scene is composed of points along lines [figure 1(b)], the
productions shown in figure 10 will find all singular points. Note that inflexion
points are generally not singular points. —

w
• • w --• • 0 w First singularize end points

IV • IV wØ w and isolated points

• •
. • A point having at least two sharply

non-collinear neighbors is singular.

• is a black point, w a white (blank) point, C) is singular (and black).

These are isotropic productions, • . w means • w and . and • etc.

Figure 10

2.2 Give to each line a name with a direction

The singular points are extreme points of lines; give to each line a different
name (identifier, atom, variable name) as follows:

(a) If the two extremes of the line are not the same singular point, arbi-
trarily consider one extreme as its beginning, the other as its end, and give a

335

APPROACHES FOR PICTURE ANALYSIS

name (say a) to the directed line, beginning—'end; the line going in reverse
sense is ii.

(b) If the two extremes touch, assign a counterclockwise sense to the line.
5 is thus b reversed.
(c) Tangency cases are considered as shown in figure 11.

•

never as

We assume they do not really
touch, although they do.

In this case the tangency point,
normally not a singular point,
is made singular (an end point).

Here the tangency point is also
a singular point.

Figure 11

2.3 Encode each directed line

In figure 1(b), lines are specified by many points (each point known by its
two-dimensional coordinates) and it is desired to have a more economical
description of lines.
This description should specify as clearly as possible the shape of the line.

Ideally, this description is not more than f(s'), the function that gives the
curvature as a function of arc length (cf. the 'shape of a curve' above). We
avoid f(s') because it is difficult to obtain some spatial feeling for the curve
described by a given f(s'). Nevertheless, we note thatf(s') is independent of
size, position, and orientation of the curve. (See figure 12.)

Arriving at the encoding we use. Basically, we want to observe the slope of
the directed line — as shown in figure 13. We also want to record the points
where such slopes are obtained:
former figure 0 3 0 3 2 1 0 0 0

(3,5) (5,4) (8,2) (9, 2) (10, 1) (9, 0) (7,0) (4,1) (3,0)
This is ambiguous for the figure with an infinite number of points with slope 0;
which will we record?

336

0

Figure 12

2

code for slope
Figure 13. .Note that slopes are unoriented.

0

2

Figure 14

GUZMAN

0 3 0 3 2 1 0 0 0

To solve this, we
(a) extend the definition of slope 0— to and similarly for the
others, as shown in figure 14.
(b) Select as the point to record together with slope i the midpoint of all
those points having such slope i. (See figure 15.)
Note that the slope of point (60, 50) falls within the range of slope 0, that

is, between +tan 22.5° and —tan 22.5'; thus it may very well not be exactly 0.
Then, to make the coding insensible to rotation, we select the most common

slope and rename it 0, modifying correspondingly the names of the other
slopes. (We are choosing as the horizontal or 0 slope the axis of the curve.)

337

APPROACHES FOR PICTURE ANALYSIS

Slope 0

0
1 T 3

60, 50 /t _/'slope 1 slope 3
30,40 . 100,30

110,10-> 2 1 0 3 2 1
--->

(30,40) (60,50) (100, 30) (110, 10) (105,2)

e3

) slope 2
slope 0

l05,2

Figure 15

Unfortunately, the scheme is not really insensible to orientation; and for
the same line we have a one-slope code in one case, and a two-slope code when
we rotate it slightly, as shown in figure 16. To avoid this, we decide to find
the axis (the most common slope) first and then encode.
With this experience, we now proceed to describe the procedure we choose.

[Other ways to encode a line or a scene are given in Freeman (1961),
Narasimhan (1969), and Montanan i (1968).]
The procedure to encode each directed line is as follows:

(1) Select the main axis of the curve. Select an axis, to be considered the
horizontal axis (slope 0) of the curve, that with the most common slope.

(2) Code slopes and midpoints. Walking along the directed line, take note of
slopes and midpoints where they occur [as in (b) above].
(3) Normalize the curve. Choose an origin and normalize coordinates of
points so as to have maximum coordinates (1, 1).

2.3.1 Select the main axis of the curve

If each curve carries its own 'main' axis with it, then we could code the curve
(with respect to that axis) independently of rotation in two-dimensional
space. This axis must be such that small modifications to the curve be
unlikely to shift the axis drastically.
Each axis can have one of 64 possible directions, within a 180° span.

To find out the likelihood of axis i to be the main axis of curve c, we add
up the individual contributions of segments of c to the axis. Then we select
as main axis that with largest likelihood (largest total contribution).
A contribution of a segment is the length of its (unsigned) projection over

the axis i; in this way a segment that is parallel to axis i votes 100 per cent
(of its own length) in favor of i [contributes 100 per cent of its length to i],
and a perpendicular segment votes 0. (See figure 17.)

338

V-

Figure 16

GUZMAN

For a segment with slope 0, its contribution (as a percentage of its length)
to the different axes j is shown in figure 18(a). This curve is nothing else but
Icos U.
Other curves could be used; a= cos4 0 diminishes more sharply.the contri-

bution to axes which are not appreciably parallel to the segment, while c=
4,1 (lcos 01) gives small contribution only to axes almost orthogonal to the
segment [see figure 18(b)]. We could also use an 'empirical' curve such as d,
in figure 18(c).

339

APPROACHES FOR PICTURE ANALYSIS

S4

(a)

Figure 17

(b)

90'
32 —01

(c)

Figure 18

(b)

To find the main axis of a curve, find the total contribution of this curve to
each of the 64 axes, and select the one with largest total contribution.

We give an example with only 4 axes and the !cos 01 law, as shown in
figure 19. The largest total contribution (12.1) corresponds to axis 1, which is

chosen as the main axis of the curve.
In general the main axis found in this way will not coincide with the axis

produced by the two points furthest apart (a, b) , or with the longest side of

the rectangle with smallest area that totally contains the curve, as shown in

figure 19(b).
A practical way to select the main axis is with the help of table 1. To do

this, we travel counterclockwise around the curve, and if a segment has

slope number I, we add the ith row of the table to the row of buckets (initially

empty); for instance, if a given segment has slope number 1, we go to row 1

340

GUZMAN

and add 0.98 to bucket 0, add 1.00 to bucket 1, ..., add 0.01 to bucket 32,
..., add 0.96 to bucket 63 (if the segment has length0 1, multiply these
coefficients by the length, before adding). Thus, we make a vector addition
for each segment; when we finish with all segments of the curve we simply
select the most filled bucket (largest value) as the main axis.

2.6 =05 3

total contrib.= 11.1

2

/1

total contrib.-9.7

0=

i=

0° 90°

0 1 2 32 63

0 1.00 0.98 0.96 0.00 0.98
1 0.98 1.00 0.98 0.01 0.96
2 0.96 0.98 1.00

. .
32 0.00 0.01 1.00 0.01

63 1.00

341

APPROACHES FOR PICTURE ANALYSIS

Since the contribution curve is symmetric about 900 (cf. section 2.3), we
can reduce the table to a size 32 x 32. [Size of table for selection of main
axis: If we consider the table as a function f(i, j) where i is the slope number
of the segment and j that of the axis, define then g(li—j1)-Af(i, j) i,je [o, 63)
and it is only necessary to store the 64 values g(0) = 1.00, g (1)= 0.98, ...,
g (63)=0.98. Moreover, the function h(1 —fl— 321)Af(i, j) requires only
to store the 33 values h(0)=0, h(1)=0.01, h(30)=0.96, h(31)=0.98,
h(32)=1.0.]
The graph of total contribution v. axis number (figure 20) is a feature of

the curve in question; we could save the 64 numbers to use when comparing
with other curves.

total contrib.
along axis] A

30-
20-
10

0-10 I t....2° ij-10 1 2 3 main axis s that having
biggest total contribution

(a)

1.0

— /0.5

Telative contrib.
along (new) axis]

(b) 0 1 2 3

Figure 20

67--4new j

For two curves to have the same shape it is necessary that they have the
same total contributions at the same Os (or is); thus we store the values
collected in the buckets:
(1) normalized first by dividing by the largest value, so that max (total
contribution normalized) =1; and
(2) normalized by renaming the 64 axes giving new name 0 to the main axis.

The graph in figure 20(a) is normalized as shown in figure 20(b) and these
64 values are stored.

If this graphic possesses several maxima a, b of nearly equal value, we
could expect small deformations to the original curve to shift the main
axis from a to b. It is therefore important to save this 64-vector to have an
idea about which curves are prone to this shift. Thus, the main axis of the
curve has been selected, in a way independent of the orientation of the curve.

342

GUZMAN

2.3.2 Code slopes and midpoints
To do this

(1) Assign to the main axis the slope number 0; this determines the ranges
for slopes 1, 2, and 3.
To any segment a slope is thus assigned; as shown in figure 21.

0 0 0

0

P4

Figure 21

main axis

(2) Find the midpoints of strings of segments with the same slope number.
The length of a string of segments equals sum of individual length of segments;
the midpoint is that point on the string equidistant to its ends.
Example. Pi in figure 21 are the midpoints of the string of segments.
(3) Make an alternating list of midpoints (its two-dimensional coordinates:
these coordinates are with respect to the original coordinates system of the
scene, and are in no way affected by the choice of main axis for the curve)
and slopes attached to them.

(30,40) / (345,42) 0 (38, 38) 3 (4l7,37) 0

P1 P2 P3 P4

where / is the slope at P1; 0 the slope at P2; 3 the slope at P3; and 0 the slope
at P4. This list begins with a point, and goes in the direction of the directed
curve.

2.3.3 Normalize curve

The above string of points and slopes is substantially the sought description
of the curve, but we need to make it independent of curve size and origin of
coordinates. For this, we choose a new coordinate system as follows:
(1) Draw the smallest box containing the curve, with sides parallel and
perpendicular to the main axis, as in figure 22.
(2) Choose as new x axis the main axis, and as new Y axis the axis perpen-
dicular to the main axis.
(3) Choose as new origin one of the corners of the box such that (a) the
curve falls in the first quadrant, that is, all new coordinates will be non-
negative, and (b) x x y, the vectorial product of +x and +y, comes out of the
paper towards the reader.
In our example, we are left with A and n as candidates for the origin.

Between these two, the final origin is selected by one of the following condi-
tions (we do not know which, yet): (i) that origin which is closest to the

343

APPROACHES FOR PICTURE ANALYSIS

center of gravity of the curve. If we choose this condition, save the center of
gravity as a feature to compare later. (ii) Jerry Evans' method.

main axis box -1

A

main axis
X

Figure 22

(4) Re-scale (contract or expand) the new axis to give the box unitary
dimensions. Thus, the sides of the box have now length 1, and the unit length
in the x direction is different from that in the Y direction.

(5) Now, re-compute the coordinates of the midpoints of the alternating
list of 2.3.2(3) to refer them to this new origin and re-scaled axes; this will
involve:

a translation of origin of A or B;
a rotation of axes to agree with box;

a scaling of Y axis and x axis to give to corners of the box the coordinates
(0,0), (0, 1), (1,0), (1, 1).

Note that the new I, axis is perpendicular to the new x axis.
After we do this, the alternating list of 2.3.2(3) becomes

) 1) 0 () 3 () 0

new coord new coord new coord new coordinates slope
for F1 for 1'2 for P3 for P4 at P4

where 1 is the slope at P1; 0 the slope at P2; 3 the slope at P3; and 0 the slope
at P4.
The slopes do not change since they refer to the main axis.

(6) Finally, the code for the line is the above alternating list plus the initial
(singular) point of the segment, referred to the new axes; the final (singular)
point of the segment, referred to the new axes; and information about how
to go from new to original coordinate system, that is, information about:
true orientation (instead of 0 orientation) of the main axis and hence of
curve; true size (instead of unit box); true position [instead of (0, 0)].
For our example, the code for that line is

c=“0-3, 0-2) (0-8, 0-7) 4-5 6-2 (32, 28) 17 Pi 1 P2 0 P3 3 P4 0)

initial final
point point

344

GUZMAN

where origin (0, 0) is located at point (32, 28) in original space; alternating
list (L) as above; contains only shape information (that is, P1 1 P2 0 P3 3

P4 0; xis to be multiplied by the factor 4.5 to obtain correct x-size; y is to be
multiplied by 6.2 to obtain correct y-size, and main axis is really slope number
17).
(Note: if c is circular, instead of the initial point, put the mark CIR, and

also place CIR instead of the final point. This will indicate that the alternating
list should really be considered as a circular list.)
We associated with this code the name given [in section 2.2.(a)] to the

directed line; the code for t is obtained from c by reversing the initial and
final points and the alternating list, thus:

ë=((08,07) (0.3, 0.2) 4.5 6.2 (32,28) 17 P4 0 P3 3 P2 0 Pi 1)

What have we done? We are able to code the shape of a curve; to do this
we normalize the curve to make it horizontal (that is, along its main axis),
then we expand it or contract it to make it fill a unit box; then we bring this
box to the origin (0, 0).

2.4 Encode each region as a set of lines

We have described a procedure to encode each line joining singular points.
From these descriptions we could regenerate the original scene. Moreover,
the scene is not restricted to contain exclusively 'regions'. (A region is simply
a closed curve, or a surface with a botindary, an inside, and an outside.)
In former programs, this was a requirement, and 'illegal' scenes (scenes not
meeting this requirement) would indicate that the scene could not be con-
structed by photographing or projecting a collection of three-dimensional
polyhedra.

(a) (b) (c)
Figure 23

An illegal scene is detected if by deleting a line you are able to increase the
number of connected components; (cf. Guzman 1968, page 217, 1970).
Examples are shown in figure 23.
Now a scene which is 'illegal' is also acceptable, for instance an apple,

with 'trees' inside [see figure 23(c)]. We do not know if we will use the
concept of 'region' as much as before, but just in case we do, we will specify a
way to encode regions in terms of (already coded) lines.
Coding a region is simple, you go around counterclockwise and write

down the names of the lines as you find them, as shown in figure 24. We
understand that the code for a region is circular, so that code for region 1
could have been e d b 5;dbli—J;orbaed.

345

APPROACHES FOR PICTURE ANALYSIS

region code for

name that region
1 =dedb
2 = c
3 = e

Figure 24

Coding of illegal regions

A tree of lines is coded as shown in figure 25(a). A region with a tree hanging

is coded as shown in figure 25(b). If there are several trees at a node, list
them counterclockwise, first the interior ones, as shown in figure 25(c).
Note. There are many more cases. This section on coding of illegal regions

needs more work; it may be inadequate as it is now.

(k a (b (s) (t)) (d))

first k, then a, then a node with three
branches, listed counterclockwise

(a)

dabE- region without tree
d (e (f) (a)) a b e— with tree
where (e (D()) is the tree between
d and a

(b)

)()()abe
tree 71 tree T2 tree T3

(c)
Figure 25

2.5 Encode special regions and lines

Although the encoding just described is good for any scene composed of

curved and straight lines, it could save code to have special ways to encode

repetitive shapes.

in

a tree is
a list of
branches

346

GUZMAN

Stick regions. A region formed by two long parallel (not necessarily straight)

lines classifies as a stick; to code the stick we code its skeleton plus informa-
tion about length-to-width ratio. An example is shown in figure 26.

Figure 26. Normal coding for region 1 is 1=a b ,47 alternative coding, recognizing
that it is a stick, is 1=(s-rtc 0.05b), where 0.05 is the ratio of width : length and b
is the code for the skeleton of 1, which is essentially the code for b or d.

Should we use a b Zd or WICK 0.05 b) as code for region 1? Until we
know better, we will retain both.

Wiggly lines. The wiggly line in figure 27(a) has been coded by the general
coding procedure as the (independent) lines a, b, k. An alternative
coding is shown in figure 27(b). Regions containing repeated lines are
shown in figure 28.

(a)

(b)
Figure 27. u is the name of the line; v the principal shape; w the shape of the
modulation; and 0.1 the ratio size of the modulation: size of the carrier.

Figure 28. u=(c0NTAININO v w 0.05 ppp omo) where v is the shape of the container;
w is the shape of the contained; 0.05 is the ratio, size w: size v; and a and p are
other parameters (as yet imprecise), for example, how often w is found, in what
directions, and so on.

347

APPROACHES FOR PICTURE ANALYSIS

2.6 Example of an encoded scene

The code for scene 'CUPS' (see figure
cuPs.(1 2 3 4 5 6 7 8 9)

1.(e g Re)
2.(b a)
3=(m ehfgij)
4=(k17)
5=(ph1s)
6. (q
7=(o43r)

9=(hd)
a=(
b.(
c=(
d=(

u=()

Each of these looks like the description of c or E.

29 ̀ cuPs') is

A list of regions, plus
a description of each
region in terms of lines,
counterclockwise
(cf. section 2.4)

plus

A description of each
line in terms of midpoints,
slopes, normalized axes,
and so on, as described
in section 2.3.

fl

Figure 29. 'CUPS'. The code for this scene is given in section 2.6.

3. MODEL DESCRIPTION

In section 2 we have encoded the scene (input data) to a form that is
presumably easier to analyze. This encoding represents the scene originating

it, in the sense that you could regenerate the scene from the encoding (for

instance, you could display it or plot it).

348

GUZMAN

In this chapter we will encode or represent models, which are abstractions
or representations of a class of objects (figure 30). In the first half of this
chapter, models will emphasize shape, suggesting the name shape-models for
these models; in the second half, models will emphasize relations among
parts, thus the name relations-models. Both names will soon be forgotten.

Figure 30. Objects and models. This figure refers to the FDL,--1 language or notation
to describe scenes and models formed with straight lines (Guzman 1967). A model is
the representation of a class of objects. Given a model [such as (3)] and an object
[such as (1)] or a scene, the program TD (Guzman 1967) will determine whether that
object matches the model, which is to say, whether it belongs to the class described
by the model, that is, whether it is an instance of the model. In this paper we follow
the same philosophy, although we do not use FDL-1 notation.
Scene. The description of triangle EFD is (E (FD) F(ED) D(EF)(1) where E is
(10, 6); F(12, 5); D(11, 3). In the same scene, the description of triangle C KG is
[G (BC) B(A KG) K(BH) H(KI C) C(HG) (2) where G(5,7); B(3,5); K(2, 4);
H(5, 4); C(6, 4)]. Each of these descriptions depicts only one object; for instance the
last description represents triangle C KG in the figure and nothing else (and no other
triangle). Also, each description fully describes the object, so that you could regenerate
the object in the same position in space, orientation, size, and so on.
Model. The model (Q (RS) R(QS)S (Q R)) represents any triangle. (3). It represents
a class of objects, that is, all triangles, irrespective of position, size, and so on. As
such, it represents or stands for triangle DEF and KG C above. The model ((Q (RS)
R (QS) S (Q R)) where ((LENGTH SR X) (LENGTH Q R X) (VARIABLES X)))
represents any isosceles triangle. Any object belonging to the class of isosceles
triangles is represented by this model. Given a model, you could draw several of the
many objects it represents.

Once we have a model for a hat, we could use it to find hats in a scene, in
at least two different ways:

(1) We could give it to a model-matching program, such as TD (Guzman
1967) (shape-models, first half of this chapter).

(2) We could use context and global information in addition to the model-
matching program. This approach is described in this paper (relation-
models).
Either way, we need a model for a hat. Can we isolate an object in a scene
without having a model or description of it? Yes, we can, when the object is a
polyhedron (flat face) [Guzman 1968].

349

APPROACHES FOR PICTURE ANALYSIS

The use of models is as follows: in order to find hats in a scene, we describe
what a hat is, by writing a model for a hat. This model is more general than
any particular hat; it represents the class of objects known as 'hats', or, at
least, many hats. Ideally, it is a collection of constraints that the hats obey;
it specifies the criteria to determine whether a given object belongs or not to
the class hat.

This is the ideal case, when a model really represents all hats. In practice,
our models specify geometric and topological constraints on the shape, size,
and so on, of an object to be classified as hat, while the human constraints
refer also to the use of the object (that is, covers the head); for instance, in
the tropics big leaves may be used as hats in rain. Not being so smart as to
take these things into account, our models are generalizations or abstractions
of objects in the following manner.

3.1 Types of models

(1) Fixed. If necessary, a model can represent a single object, that is, a
particular hat in a particular position of certain size, and so on.

Figure 30 refers to the FDL-1 language or notation to describe scenes and
models formed with straight lines (cf. Guzman 1967).
A model is the representation of a class of objects.
Given a model [such as (3)] and an object [such as (1)] or a scene, the

program TD (Guzman 1967) will determine whether that object matches the
model, which is to say, whether it belongs to the class described by the model.
In this paper we follow the same philosophy, although we do not use

FDL-1 notation.
Thus, it is possible to specify model ml such that it represents hat H1, as

shown in figure 31.
(2) Rigid. A model can represent a class of objects obtained by translation
of a particular object. That is, it is possible to specify mode m2 which
represents any of hats H1, H7, H8, but not the others in figure 31.
(3) Free. As above, but now a model can also allow for rotation. Thus m3
represents any of hats 141, H7, 148, or 149.
(4) Arbitrary size. A model can also allow enlargements or contractions.
It is thus possible to specify model m4 to represent any of HI, 142, 149.
(5) Constraints. Sizes and orientations of the individual components of a
model (a model is composed of several regions or closed surfaces) could
remain fixed or vary relative to each other in arbitrary but prespecified ways.
That is, a model may specify constraints on its free variables V1, V2.....
Thus, it is possible to specify models m5 to represent any of 142, 143, 115, 147,
148, but not the others.
So far we do not have flexibility to change or specify changes or tolerances in

the local shape of the model, that is to say, the shape or form of the different
lines. For instance, no model could represent (so far) both H7 and 1110. We
remedy this in part by introducing 'OR' models and 'sloppy' models.

350

GUZMAN

(6) ORs. A model could represent the disjunction of several models. Thus,
M6 represents any of HI, ..., 1110.
(7) Sloppy. Deviations in the shape of the lines forming the model are
allowed. We do this by specifying a match tolerance or sloppiness for some
metalines, that is to say, the error allowed when we compare two similar but
not congruent lines. A way to implement this is by having the program that
compares a line against a metaline to give as an answer, instead of 'match'
or 'failure to match', a score between 0 (perfect match, congruency) and 1
(perfect mis-match), a measure of the dissimilarity in shape.

(V„ V2)1,--> C21)
m2

(Vi, V,)

(Vi, V,

mR)

v„ V2)

MS

M4 OR

CgD

H4 (gH5

Cq) (gDs
H7 H8

g)-19 CCD)H10

cg3
M6 HII HI2

ALLOWED
MISMATCH

M7

Figure 31. Models and hats. Free variables VI, V2 of model m2 allow it to match
with HI, u7, or 118. Model m3 has free variables VI, V2, and V3.

Thus, if we obtain 0.08 when comparing a metaline with a line, but that
metaline has associated a sloppiness of 0.1, we consider that it matches the
line. This is because a metaline with a sloppiness of 0.1 matches with lines
that are either congruent to it or differ from it by not more than 0.1. Thus,
M7 represents any of HI, 112, HI2.

351

APPROACHES FOR PICTURE ANALYSIS

(8) Different topology. A way to specify changes in the topology of the model
is shown in figure 32. This is modelled after CONVERT (Guzman and McIntosh
1966) and the models of my program TD (MAC TR 37). We do not propose to
implement (8) now. Although it will be quite useful and important to be
able to specify two-dimensional patterns of such generality, we propose this
as an independent study preferring to concentrate here on the Context Prob-
lem.

hat

representing

any number of 1
)6(...\ anything here as long as both are the same.

chair

represents

(X Y Y Y x) plus x PAT n Z•-s•
Y PAT n
U GRT V

representing

Figure 32

chair 1,

chair 2, ...

3.2 Producing the shape-model

We now specify the notation used to write models (called shape-models,
since shape is emphasized); but we will not discuss here how to write a
program that interprets this notation and really makes the comparison of a
model against in object (or against a collection of regions of a scene).
Such a program will answer 'yes' or 'no' to the question 'does this object
match this model T, where the model is written in the notation we are about
to describe. We expect that this program will follow the procedures used in
TD (Guzman, CCA) and DT (MAC TR 37), but at this stage we ask the reader
to believe in such program. Later, we will discover that it is sufficient to
write a program that compares individual REGIONS of the model (meta-
regions) against individual regions of the scene. This simplifies the task.

352

GUZMAN

Here is how we build or write models that could have properties (1) to (6)
above: Let us remember that the encoding or description of a line is of the
form

******** ******* *** *** ******
=((0•3, 0.2) (0.8, 07)45 6.2 (32, 28)

initial final X position
point point factor factor of origin
**
17 PI 1 P2 0 ...)
slope of main shape
axis information

This encoding represents a particular line: that which has initial point (0.3,
0.2), final point (0.8, 0-7), and so on.

.1.1. In contrast to this, a metaline (model line) is a line with some of the
parameters marked with *** left unspecified (we denote this by the symbol
= = of CONVERT), and represents the class of lines obtained by assigning
arbitrary values to such unspecified parameters; for instance, the metaline
cl =((0.3, 0.2) (08,07) 4.5 6.2 = = 17 PI 1 P2 0 P3 3 P4 0) where
= =is the position of origin (unspecified) representing any line obtained by
displacing C arbitrarily, that is, by choosing an arbitrary origin.
Cl represents any of the lines shown in figure 33(a) since we have left

undefined the position of the origin.
Also, metaline C2=((03, 0.2) (0.8, 0.7) 4.5 6.2 (32, 28)= =PI 1..)

[where = = is the slope of main axis (unspecified)] represents any line
obtained by rotating C; in fact it represents 64 lines, since there are only 64
slopes. C2 represents any of the lines shown in figure 33(b) while metaline

C3=((03, 0.2) (0.8, 0.7) = = 6.2 (32, 28) = = PI 1 P2 O..)
initial final X slope of main
position position magnification axis (unspecified)

(unspecified)

represents or describes any line obtained by tilting C and stretching it along
the X-axis: C3 represents any of the lines shown in figure 33(c).

3.2.2. Instead of leaving these *** parameters completely unspecified, we
could specify them by referring them to a variable, and 'setting the value of
this variable outside the metaline', thus:

C4=((03, 0.2) (0.8, 0.7) S S (32, 28) 17 PI 1 P2 0 P3 2 P4 0)

(where x and Y magnification is set to be S) representing any line obtained
from C by magnifying x and Y by the same amount S. The exact value of S is
not specified in the metaline (but it will usually be specified 'outside' it — this
will be clear in a minute), so we only know at this moment that the same
magnification will be applied to both x and Y.

AA 353

APPROACHES FOR PICTURE ANALYSIS

(a)

(b)

Figure 33

---_---'

/A • \

(c)

3.1.3. We intend models to be collections of regions (metaregions) which in

turn are collections of metalines: a model M is a list of the form

M=(V1 V2 V3 V4 ri r2 r3 • • .)
where VI is the x-magnification, V2 the Y magnification, V3 the position of

origin, V4 the slope of main axis and ri, r2, T3... the metaregions forming
the model; plus the definition of its metaregions: = (Li L2 L3 • •) r2= • • • ;
r3=...; and so on; plus the definition of its metalines: L1=. . . .; L2= • • • • ;
L3 = (***); and so on; and the starred parameters are here specified to be either
numbers or expressions involving VI, V2, V3, V4; that is, we are describing
the initial position, x-magnification, slope of main axis, and so on, of the
individual lines in terms of the x-magnification, v-magnification, and so on,

of the model.
3.1.4. The model M of section 3.1.3 has an unspecified x-magnification,
v-magnification, and so on (that is VI, V2, V3, and V4 are unspecified). We
could restrict such a model by the addition of properties or constraints
imposed on the V as follows:
M2 =((V1 V2 V3 V4 Ti r2 r3 . . .) where (greater VI 5) (smaller V1 10))
that is, M2 represents the class of objects that match model M and also have
x-size between 5 and 10 (remember VI is the x-magnification). The connec-

tive where attaches properties to models, as we previously did in DT (Guzman
1967).
These properties may be any defined function of the Ks (any function

defined by a subroutine). In the example shown in figure 34, any value for

354

GUZ MAN

x-magnification and v-magnification is all right. Notice that we require
x-magnification = y magnification. Any position of the mug is acceptable.
Any orientation of the mug is good. Notice that we do not include R5 the
background as part of the mug.

Figure 34

MUG,-(VI VI V3 V4 R1 R2 R3 R4)

where VI is the x- and v-magnification, V3 the original position, V4 the
slope of main axis, and R1, R2, R3, R4 are regions of the mug.

R1.(ij h f)
R2=(baZeJ7j)
R3=(dc)
R4=(h g)
a=(
b=(

j=(
where we put expressions containing V1, V3, V4 in the empty brackets.
We do not elaborate more, since (1) no room; (2) fine details depend

much on the TD-like program that matches these models.
These models, called momentarily 'shape-models', that could describe

accurately the shape of the body being described, will be used mainly to
describe regions (that is, a model will contain only one metaregion), the
relationships of shape and position. For example, we plan to describe a cube
as shown in figure 35.

This new model of a cube (called momentarily relation-model) is less
specific that the shape-model of a cube, because it will allow things such as
figure 35 (b) to be classified as Cube, while the shape-model will reject
that thing, due to the more elaborate requirements about lengths of sides,
and so on. We will see later that this will cause little harm. Then, the use of
shape-models will be limited to specifying each region (metaregion), such
as the description of parallelogram above, and we will use relation-models
to represent an object or a class of bodies, using relations between meta-

355

lei

APPROACHES FOR PICTURE ANALYSIS

(a)

CUBE =

next
PARALLELOGRAM PARALLELOGRAM

nex next

PARALLELOGRAM

(b)

Figure 35. New model of a cube, an example of relation-model. The description
PARALLELOGRAM=() will be described as specified above (strict description
of its shape) under 'shape-models.'

regions, as in the relation-model CUBE above. We will then forget the names
shape-model and relation-model.
The apparent failure of relation-models to be precise is just apparent; given

more and precise relations, we could refine the relation-model of the cube
so as to accept or match only cubes. But we do not choose to do so, and
instead we leave the relation-model of the cube (and of most of our objects)
under-specified or not sufficiently specified so that they will match with cubes
but also with other things. Why do we do this? Carelessness? No; in most
of our scenes things like figure 35(b) will not appear, so the insufficient
specification of a cube will not hurt. What do we gain? Some speed, because
a cube will be faster to check, or to match, if it contains few properties or
relations.

3.2 A scene as a graph of relations between regions

3.2.1 Synopsis

We would like to talk of relation-models, and for this we need to establish
or discover relations between parts of the scene. These parts are the regions.

next to 'c> , ■C-s, far from

(a)
•

356

GUZMAN

The relations or predicates [see figure 36(a)] indicate geometric properties
that hold between regions, and a graph of relations is just that, for instance,
for scene 'CUPS' (figure 29) we have the graph shown in figure 36(b),
which could be represented as figure 37(a).
This section explains how to obtain these graphs.
What is their use? Well, we also have in memory many models (shape-

models) of regions: for instance, our SHAPE memory may contain the
models or descriptions shown in figure 37 and when we apply a program
[ETD to the nodes 1-9 of (a)], we will find that we can label figure 37(a) as
shown.

matches 1—R6 5-R1
2—R4 6—R7
3—R8 7 — R6
4—R7 9—R7

(a)

R9 =

(b)

Figure 37

4-

R3=

Well, we also have in memory (our model-memory) models (relation-
models) that describe objects which we desire to identify in our scenes;
see, for instance, figure 38.

Figure 38

4

Or CUP=

357

APPROACHES FOR PICTURE ANALYSIS

To find 'cup' in the scene, we could find whether the graph for cup is a
subgraph of the graph for the scene. Our proposed method to find if a cup is

present (and where it is, plus a description of the object) is not based in graph
comparisons, although it could work that way by using graph isomorphism
and tree search on graphs (Rasta11 1969), but it is based instead on the use
of global and local information.
Thus, we find regions in a scene, then find relations between these regions

and finally we organize these relations into a graph, as in Barrow and
Popplestone (1971).
Having done this with the scene, we could do the same with the object

which we want to model, except that its regions will be described as meta-
regions (model-regions, using shape-models) and that we will describe not
only objects but also agglomerations of objects that occur frequently; that is,
in addition to the model of hat and the model for person there may be a
model for person wearing hat. (As we will see in section 6, models can have

models as components.) Once we have expressed the models of the objects
and the scene in this graph-oriented manner, we proceed to compare them,

as explained in section 4.

3.2.2 Regions

Regions in the scene are closed curves (cf. section 2.4). Relations will be
placed between regions. In addition, it is useful to consider the following

as 'regions' for the purpose of placing or finding relations between them:
(1) 'almost closed' regions — such as a and b which will be closed if we close
the little holes p' as shown in figure 39(a). (Indeed, we think artists leave
these little spaces to make an uncluttered and clean drawing, without joints

which are blacker.)
(2) Open regions, that is, lines which are peculiar to certain objects. For

instance, R in the fork, Sin the shirt in figure 39(b). The trouble with these is
that it is going to be difficult to find them in the scene, unless we are looking

for them.
P p

IP C.--LID

P

(a)

358

GUZMAN

3.2.3 Relations

Each region of a scene is in certain relation(s) with others. To describe a
model we are specially interested in geometric relations and in those that
are peculiar or essential to the model and set it apart from other models.
Thus, a relation-model will contain 'important' relations, given by the user
or whoever constructed that model.
For a scene, we do not propose to find a priori the values of all possible

relations between its regions. [My former office-mate Tom Evans (1970) finds
the values that the relations (of a specified set) obtain when applied to all
possible n-tuples of regions of the scene, in a program that studies two scenes,
describes them, and then 'merges' intelligently these descriptions, giving
birth to a third description which economically describes or generates both
scenes.] However we will look for them as we need them (or as we think we
need them), guided by the models we are trying to match. To witness, if we
think figure 40(a) could match with the model in figure 40(b), only then we
look whether (ABOVE K2 K!) is true. More in section 4.

flower

2 above
1(3 above

'*1.%)

(a)
Figure 40

(b)

stem

4ext

vase

Instances of relations are

(1) Predicates. Or one-place relations. Examples are shown in figure 41.
Although some of these are not predicates, we could include them here.
Since these predicates refer to one region, they end up being a function of
the shape of the region. In this sense, they do not provide 'global' information.
(Local information: that obtained by analyzing one region alone, ignoring
or disregarding its surroundings. Local information is produced by the
shape of the region. Global information: that obtained by analysis of several
regions together, paying attention to their disposition, relative position,
similarities, and other relations among them. Global information is given
by the relation between regions.)

Figure 41

Thin (

Illegal (

)= true, Spherical () = 0.7

)=false, Straightlines () = 2

Horizontal, floating, and others.

359

APPROACHES FOR PICTURE ANALYSIS

In the graphs of section 3.2, if the nodes are regions, then the predicates
are labels or colors pasted on the nodes.
(2) Two-place relations. Very common. Shown in the graphs of section 3.2 by
links or arcs, of different shape for different relations. Directed arcs for non-
symmetric relations. Some are shown in figure 42: next, higher, left, sprouts,
interleaved, non-touching, and others. Most of these relations describe the
position of the two regions in two dimensions.

next

CZ?
above ,e

1? -44444444-4-surrounded

Figure 42

More difficult to compute from the 2-dimensional data are 3-dimensional
relations (indeed, this is a separate problem, interesting and difficult) such
as that shown in figure 43. Although we would like to, we do not propose to
make use of 3-dimensional relations. Reasons: (a) our models and our data
are 2-dimensional; (b) we do not know how to compute them.

Mnp71

behind

same-height

Figure 43

in-front

(3) Three-place relations. There are several. (See figure 44.) Incidentally, I
have no elegant way to represent them in the graph. I do not like the notation
in figure 44(b) because it adds the 'object' to the other objects in the picture.

360

'between

Figure 44

(a) (b)

GUZMAN

extremes of)

 -CD

(4) Many-place relations. Some are shown in figure 45. We will handle
these relations in the same manner as 2-place relations.

- several

sequence

several

several

Figure 45

3.2.4 Summary

A model is a graph of relations between its metaregions: each metaregion is
described to represent a class of regions:

R2=(V1 V2 V3 V4...) (shape-model)

Given a scene as a collection of regions we use shape-comparison (the
program ETD) against our relation-models, to assign to each region a name
(of a metaregion), as in figure 46.

361

APPROACHES FOR PICTURE ANALYSIS

Figure 46

4. ANALYSIS

We wish to compare models with scenes, so as to ascertain, for each region
in the scene, the name of the object possessing such region. There are several
ways to go about this. First, there is the tree search approach, where most
likely candidates are chosen first, the consequences of these choices are
explored and suggest further choices; a failure motivates a revision of choices.
This is a serial approach, where the first choices suggest the next choices.
Secondly, there exists a simultaneous approach, where all possible choices
are taken 'together' at the same time, wrong choices being eliminated because
of contradictions sprouting from them. These two approaches are symbolic
or non-numerical ways to solve the Context Problem. Thirdly, it is possible
to use a statistical approach, in which shape assigns probabilities to the events
that certain regions are in fact a nose, the hoof of a horse, the tail of an
armadillo, and so on. Models are expressed as conditional probabilities
between regions related by relations, that is, the probability of R1 being a
tree given that R2 is a rock is 0.6; to obtain the best description of the scene
we maximize the probability of the whole scene being consistent, once we take
the models into account. In this paper we will not discuss the last two
approaches, but only the first.

4.1 Tree-search approach

As we describe this procedure, a simple example will illustrate the road.

4.1.1 Models

Suppose we have in the memory of our computer the models appearing in
table 2, coded as dictated by section 3. These models are shown in table 3 in
order of inclusion or membership, to the right being the terminal models
RI, R2, R18,. . R272, R281 which are defined in terms of the shape of the
metaregions they represent; to the left being more complex models such as
BOY, S-HEAD, or R24 formed by simpler models and terminal models.
The terminal models themselves appear in table 4, together with the shapes
they stand for. They are coded using metaregions (shape-models).

362

GUZMAN

Table 2

graphic
explanation
(not a part
of the model)

MODEL Comments
(stored in memory) (not part of the model)

(1.

S-HEAD=

R1=

R2= q.

R3 =R31° or R32

R31°

R7—R4)
R32= R51 sequence

R6

R4 =R41 or R42

R41=

R42=

R5 =R51 or R.52 or R53

R6=R61 or R62

R7=R71 or R72 or R81

R71= '1"

R72 = •

et/ RI 3 \

R7 R7

F-HEAD=

R2

R10

definition of side-head

terminal model
(defined by a metaregion)
(defined by its shape)

terminal model

Or

terminal

4

\ or

terminal

terminal

4 or -4 Or 4

or j

or • or 1

terminal

terminal

n13

R2

R7 R7

R

R12

10

363

APPROACHES FOR PICTURE ANALYSIS

Table 2—continued

graphic
explanation
(not a part MODEL Comments
of the model) (stored in memory) (not part of the model)

R13=R1 or R132 (..? or e
ellipse R29= C) terminal

S R9=R91 or R92 Or ,S

.••• R10=R101 or R102 .or R103 --.1-_-_-. Or -::-"... or..._..--

e R2CUP= R62

D:fP

R12=R121 or R122

SUPERIOR EXTREMITY-
R15-1116 or R15-R17-R16

R15=R151 or R152 Or R153
or R154

R16=R161 or R162 or R163
or R164

R17=R151 or R172

R18= f------‘

"J

•■•■■•

or

) or:29

or •--

or

terminal model

INFERIOR EXTREMITY= acts same as
R20 R20 R20
R151-[optionall}l'equence
R22—.. or R151

R22
R22

R20=R152 or R151 or
R203 or R204 or
R205

or Jo: joVor),I)

364

GUZMAN

Table 2—continued

graphic

explanation
(not a part

of the model)

definition

of
boy

MODEL

(stored in memory)

R151—

R22 —R222 or R223 or
R224 or R262

HAT [optional]

R25— HEAD

SUPERIOR

[opt]

R21

BOY= EXTREMITY

Comments

(not part of the model)

R26 or R24

[optional]

terminal

-,
; R25 [optional] ‘.

1 I

[optional]

,
SUPERIOR 'i

t EXTREMITY ;

R18

IN -N. INFERIOR
EXTREMITY EXTREMITY [optional]

HEAD=F-HEAD Or S-11EAD

R23= (i

R261— R261
R24= R261/'

3r1/1102

41$
R2 —R102 —R102 —R2

‘R103/
R31

R18

16
terminal

or

male

person,
young

R261—R261
R26— Of

R262 —R262
r;or

R3 1 sloppy 0.2

HAT= R30 —sequence V
[optional]

R290—)

R25= ›N ' terminal

365

APPROACHES FOR PICTURE ANALYSIS

Table 2. Models. The models of this table will be used in the examples
that follow. The models of this table are relation-models, and are
non-terminal, such as R28 (defined in terms of other models), or
terminal, such as R29 or R31, defined in terms of the shape of the
metaregion (this shape is described as a shape-model) they contain.
Note the similarity with production rules in a Grammar.
How can a single model, F-HEAD, for instance, represent a great
variety of heads, and not only a few? This is due to the ORS that many
models have, specifying several alternatives. Also, even terminal models
represent many objects, as we saw in section 3.

graphic
explanation
(not a part
of the model)

MODEL
(stored in memory)

Comments
(not part of the model)

,gc)

R27 ---- R271 or R272

R28— (
R281 R151 R281

sequence

/
%R16-R3)

-Riff •

Olt
SUPERIOR

EXTREMITY 'JIB
•GIRL=

R92-Ri5I

INFERIOR

EXTREMITY

°r

R16 ‘? R3

R172

\391

RI8
i•-■•4 SUPERIOR

EXTREMITY

R9 R15
c I

INFERIOR

EXTREMITY

366

Table 3. Terminal and non-terminal models

HEAD

BOY

S-HEAD

RI
R2

R18

R23
/R25
oyi R29

boy R290 •-b%

1-vio- R42 R5‘ c2
V 11- lk 3
R4

GUZMAN

5 R6'Z 61R61

R62

R71

R72
1181
R91
R92
R101
R102

R121
\-R122
R132
RI51

R152

R153

R154

R161
R162
RI 63
R164
R172
R203
R204
R205

R
R224

223

101 4.26/

R281

367

R222

APPROACHES FOR PICTURE ANALYSIS

Table 4. Terminal models

R1I U 1RJ1 1 J R62 R103

Q.....,

R2 J R310

0

R71 R121

i 4

\>

R41

0

R72 i R122R18

0

R23 R42

•••.....

R81

ft'
%e.g...

R132

R25 R51 R91

A)

optional R151

CD

R29
--)

R52
S

R92

7,1c
11.7t \ /

■
optional R152

) R53

■-_../..

R101
.---)
 R153

(.--

R290

R30

,
R102 R154R61

368

GUZMAN

Table 4—continued

several

R172 R262R222R161

R162 R203 R223

A
R271

R163 V R204 1R224
\--

R272

t/Th
...- je

....-

R164 '.•$) R205 - R261

1111

R281

In general, each model (hence, each terminal model) appears as a format
of other 'more complex' models; for instance, R18, appears as part of BOY
[figure 47(a)] as part of GIRL CHEST [figure 47(b)] as part of CHINESE
[figure 47(c)].

In these models the same shape plays different roles (has different names:
waist, mouth) but the most we can learn from its shape is that its name is
1118.

(a) (b)

Figure 47

(c)

4.1.2 Scene

Suppose we want to analyze scene 'PERCHED' (see figure 48 'PERCHED')
with the models of table 2. The scene is initially described in terms of its

1313 369

APPROACHES FOR PICTURE ANALYSIS

regions and lines, as we saw in section 2. Thus, its regions are a, b, c, .
y, z. Our next step is to find our names for these regions, according to their
shape. For instance, we want to find that region t should have the name R1,
because it matches with model RI.

Figure 48. 'PERCHED'. Example of scene to be analyzed.

For each region r and each terminal model m, we could ask whether one is
an instance of the other, that is, whether (ETD m r) is true or not (ETD is a
matcher program). When it is true, we associate to region r the name m.
All the possible alternatives will require too much time to compute, so we use
heuristics to suggest pairs (m, r) likely to match, and only to these pairs we
apply ETD. The paragraph below explains how this is done.

4.1.3 Selection of likely pairs
The preliminary search for region r matching terminal model m [m e table 3,
T e 'PERCHED'] is done with the help of a vector of features extracted from
each region r and metaregion m:

f=(f1,.12,f3, • • .,.fk)
whei e fl= number of straight lines of the region

f2 =area of the region
f3= center of gravity [computed already in section 2.3.3(3)b.i]
f4 = curve Total Contributions v. j [computed already at the end of

section 2.3]
f5= eccentricity of the region (cf. Krakauer 1970).
f6 =long and thin? yes or no
f7 = Fourier coefficients of curve describing boundary
f8 =

[all these features are examples only; they may not be the ones
that we will eventually use]

These features should be easy (quick) to compute. It may be non-trivial to
find 'important' features which will do an adequate job. Barrow and Popple-

370

GUZMAN

stone (1971) have developed similar ideas and have implemented them in a
program that uses this type of heuristic to achieve identification of simple

• isolated curved bodies as seen by a TV camera.
For our example, these features will produce the mapping in table 5. Now

we use the program ETD to refine table 5 as in table 6. These matches
represent the information about scene 'PERCHED' that it is possible to
extract from the shape of its regions.

Table 5. Preliminary terminal model

a —R222, R262
b —R41, R261
c—R151
d-,nothing
e—R151, R261
f ,̂R102, R30
g—nothing
h,,,R152, R30, R154
i —R41, R31

j—R30
k•-nothing
1-,R262
m,-,R152
n—R162, R161, R172
o,-,R223
p—nothing
q-,R132

R42

s— R310, R103, R91
t,,,R1, R31
u— R30, R151
v --,R223, R222
w —nothing
x —R261
y —nothing
z—R172

Table 6. Matches obtained by shape comparison

a ,-,R222
e-,R151
Ips,152

m,-,R152
o—R223

R2
s— R310
t—R1, .R31
u,,,R222
z—R172

Note that ETD cannot cope with occluded regions. For example, (ETD
R222 b) will fail because b is a shoe which is partially occluded. We will need
the actions of the program (is POSSIBLE R222 b) which answers the question:
Is it possible to occlude R222 so as to produce b? Is it consistent to allow
b to be a (partially occluded, perhaps) instance of R222?

4.1.6 The match

Table 6 gets reduced to table 7, where we list the regions that correspond
to terminal models belonging to only one non-terminal model (as deduced
from table 3).

Let us analyze each correspondence in table 7.

371

APPROACHES FOR PICTURE ANALYSIS

Table 7

a R222
R30

n R161
o R223
s—R310
v —R222

a —R222 because, from table 2, R22=R222 or R223
or R224 or R262,

thus, a'-'R22.
j—R30? From table 3, R30 belongs to HAT, which req

uires the sequence

R31, R30, R290. This sequence is not found, and thus, j
— nothing; thus j

does not match R30.

n—R161 because n is part of R16= R161 or R162 or R
163 or R164, thus

n R16.
Similarly,
o— R223 implies o R22

s'-'R310 implies s'-'R3

v'-'R222 implies v— R22

Our list is now
a R22
n R16
o R22
s-,R3
v — R22
We apply the same procedure again, but first the list is re

arranged into

a—R22, o R22, v— R22, n R16, s R3, in order to work first with the

models (R22) which form part of only one larger mode
l [R16 and R3 form

part of several models, hence they come at the end].

Is a—,R22? Table 3 indicates that

INFERIOR EXTREMITY= sequence of R20, R151 and R22

So a —R22
e R151, i.e., (a, e, h) INFERIOR EXTREMITY

11--222
o R22? No, because we do not find a R20 or a 11151 in sequ

ence with

o—,R22, as required by the model INFERIOR EXTR
EMITY.

o — nothing

v~R22? No, by the same reason.

v — nothing

n-,R16? If so, it has to form part (by table 3) of G
IRL HEAD or of

372

GUZMAN

SUPERIOR EXTREMITY.

Sm, R3? Yes: Sr-R3; r-,R2;7',-R1 i.e., (s, r, t) S-HEAD

We have finished our second run; our list of matches is now

(a, e, h)-'INFERIOR EXTREMITY
(m, n).-suBBBIOB EXTREMITY

(s, r, t)~S-HEAD

We apply the same procedure again. Our list is recorded into

(s, r, t)~S-HEAD
(a, e, h)-'INFERIOR EXTREMITY

n)-.SUPERIOR EXTREMITY

in order to work first with models belonging to only a few other models:
S-HEAD belongs only to HEAD (see table 3), while INFERIOR EXTREMITY

and SUPERIOR EXTREMITY belong both to BOY and to GIRL.

(s, r, 1) ,̂S-HEAD implies (s, r, t)-HEAD because HEAD=S-HEAD or

F-HEAD
(a, e, h) ,̂INFERIOR EXTREMITY?

INFERIOR EXTREMITY Mist be part of either GIRL or BOY. GIRL fails

because there is not a GIRL STOMACH above (a, e, h) so it must be part

of a BOY. This requires the presence of R18 and R27 next (see BOY in table

2). These models are not present in table 6. But we observe that they are

unlikely to be in table 6 anyway, since they do not form closed regions. We

need to look for them if we want to find them (if we suspect their presence).

We do this and encounter them.
Then we need a HEAD next to R18. That is, (s, r, t)-'HEAD.

Then we need to find a R25 and a SUPERIOR EXTREMITY next to HEAD.

This last is (m, n). R25 is one of those models that we need to look for.

We look for R25 and we do not find it. Instead of throwing away the (large)

match already found, it is time to use a rule that limits the extent of failures

in a match, when many parts of the model have been explained satisfactorily.

Thus, we ignore the failure to find a match for R25, and declare that we have

found a BOY.

HEAD-(s, r, t)

SUPERIOR
EXTREMITY

-4m' n)

i.e., (s, r, t, m, n, a, e, h),-, BOY
INFERIOR (a, e h)EXTREMITY -

To recapitulate, the implementation of our own approach (for which no

program has been written yet) depends on the construction of the undernoted

algorithms:
(1) A procedure to encode the initial data representing the scene into a

more economical description akin to subsequent efficient manipulation.

This is described in section 2.

373

APPROACHES FOR PICTURE ANALYSIS

(2) (a) A program that computes features that are useful for quick (pre-
liminary) shape disCrimination. Described in section 4.1.3 and table 5.

(b) ETD, a program to determine if a given region matches (is similar
to, has the shape of) a given shape-model. This is described in section 4.1.2.

(c) ISPOSSIBLE, a program like ETD that handles partially occluded
regions.
(3) (a) An analyzer that determines possible environments by taking notice
of abundance or scarcity of certain models.

(b) A search procedure that tries to fit possible models to bigger and
bigger parts of the scene, retreating in front of failures and advancing when
victory crowns its efforts, until the whole scene is conquered (or relinquished).
This procedure needs to have the ability of limited failure, that is to say,
'small' mismatches (failures match) will have limited effect.

Finally, it is possible to have line drawings with more than one meaning
or consistent interpretation. The approach described in this paper should
discover all meanings, provided that (1) we do not stop the tree search at •
the first consistent matching, and (2) the models are general enough [figure
49(a) will not serve as model of a leg if we need to turn the scene upside
down, but figure 49(b) will serve] to be appropriate for each interpretation.

above !next

Gt) C=5

(a) (b)
Figure 49

4.1.6 Unsolved problems
It is important to indicate the relative size of parts of the same model; then,
the size can be used to discriminate among different models. Section 3 pro-
vides no satisfactory way to do this. The problem of segmentation is also
severe: if we want to walk away from models of closed regions into models
for open regions, the approach of this paper needs a manner to divide
'naturally' the scene into its different parts, if we desire to work with models
of these parts. Thus we can handle figure 50(a) with models described in
this paper; but we need to know how to make the segmentation, for the models
of this paper to work for figure 50(b).

Figure 50

374

GUZMAN

Acknowledgements

This work began at the Artificial Intelligence Group of MIT (Professor Marvin Minsky,
Professor Seymour Papert) and has reached its present form at the Department of
Machine Intelligence and Perception (Professor Donald Michie) of the University of
Edinburgh, where I am spending an active summer. Both places provided a fertile
habitat through interesting interactions with their members, whose help I appreciate, as
well as the encouragement and sympathy for my work shown by the leaders of these
two groups, and also by Dr Bernard Meltzer and his colleagues at the Edinburgh
University Metamathematics Unit.

After a talk within the Computer Science Spring Colloquium at University of Illinois,
Urbana, useful discussions with Professor Bruce McCormack and Mr John Schwebel
indicated coloring books as a possible paradigm for the Context Problem. Some ideas
were borrowed (or suggested) from a thesis by S.Ramani at Tata Institute of Funda-
mental Research, Bombay.
The author's present address is Centro Nacional de Calculo, Instituto Politecnico

Nacional, Mexico.

REFERENCES

Barrow, H. & Popplestone, R. J. (1971) Relational descriptions in picture processing.
Machine Intelligence 6, pp. 377-96 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

Evans, T. (1970) C.O.I.N.S. Conference, Las Vegas, Nevada.
Freeman, H. (1961) On the encoding of arbitrary geometric configurations. IRE Trans.

Electronic Computers, EC-10, 260-8.
Guzman, A. (1967) Some aspects of pattern recognition by computer. Project MAC
Report MAC TR 37. Cambridge, Mass.: MIT.

Guzman, A. (1968) Computer recognition of three-dimensional objects in a visual scene.
PhD. Thesis. MIT, Cambridge, Mass. Available also as a Project MAC Report MAC
TR 59. AD 692 200.

Guzman, A. (1971) In preparation.
Guzman, A. & McIntosh, H.V. (1966) CONVERT Comm. Ass. comput. Mach., 9, 8,
604-15.

Krakauer, L. (1970) Ph.D. Thesis, MIT, Cambridge, Mass.
Montanan, U. (1968) A method of obtaining skeletons using a quasi-Euclidean distance.
J. Ass. comput. Mach., 15, 600-24.

Narasimhan, R. (1969) On the description, generation and recognition of classes of
pictures. Automatic Interpretation and Classification of Images (ed. Grasselli, A.).
New York: Academic Press.

Rastall, J. (1969) Graph-family matching. Research Memorandum MIP-R-62, Department
of Machine Intelligence, University of Edinburgh.

375

