Learning Preferences for Multiclass Problems
Aiolli, Fabio, Sperduti, Alessandro
–Neural Information Processing Systems
Many interesting multiclass problems can be cast in the general framework oflabel ranking defined on a given set of classes. The evaluation for such a ranking is generally given in terms of the number of violated order constraints between classes. In this paper, we propose the Preference LearningModel as a unifying framework to model and solve a large class of multiclass problems in a large margin perspective. In addition, an original kernel-based method is proposed and evaluated on a ranking dataset with state-of-the-art results.
Neural Information Processing Systems
Dec-31-2005
- Technology: