Slow, Decorrelated Features for Pretraining Complex Cell-like Networks

Bengio, Yoshua, Bergstra, James S.

Neural Information Processing Systems 

We introduce a new type of neural network activation function based on recent physiological rate models for complex cells in visual area V1. A single-hidden-layer neural network of this kind of model achieves 1.5% error on MNIST. We also introduce an existing criterion for learning slow, decorrelated features as a pretraining strategy for image models. This pretraining strategy results in orientation-selective features, similar to the receptive fields of complex cells. With this pretraining, the same single-hidden-layer model achieves better generalization error, even though the pretraining sample distribution is very different from the fine-tuning distribution. To implement this pretraining strategy, we derive a fast algorithm for online learning of decorrelated features such that each iteration of the algorithm runs in linear time with respect to the number of features.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found