An Analog VLSI Model of the Fly Elementary Motion Detector

Harrison, Reid R., Koch, Christof

Neural Information Processing Systems 

Flies are capable of rapidly detecting and integrating visual motion information inbehaviorly-relevant ways. The first stage of visual motion processing in flies is a retinotopic array of functional units known as elementary motiondetectors (EMDs). Several decades ago, Reichardt and colleagues developed a correlation-based model of motion detection that described the behavior of these neural circuits. We have implemented a variant of this model in a 2.0-JLm analog CMOS VLSI process. The result isa low-power, continuous-time analog circuit with integrated photoreceptors thatresponds to motion in real time. The responses of the circuit to drifting sinusoidal gratings qualitatively resemble the temporal frequency response, spatial frequency response, and direction selectivity of motion-sensitive neurons observed in insects. In addition to its possible engineeringapplications, the circuit could potentially be used as a building block for constructing hardware models of higher-level insect motion integration.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found