Goto

Collaborating Authors

 Harrison, Reid R.


A Low-Power Analog VLSI Visual Collision Detector

Neural Information Processing Systems

We have designed and tested a single-chip analog VLSI sensor that detects imminent collisions by measuring radially expansive optic flow. The design of the chip is based on a model proposed to explain leg-extension behavior in flies during landing approaches. A new elementary motion detector (EMD) circuit was developed to measure optic flow.


A Low-Power Analog VLSI Visual Collision Detector

Neural Information Processing Systems

We have designed and tested a single-chip analog VLSI sensor that detects imminent collisions by measuring radially expansive optic flow. The design of the chip is based on a model proposed to explain leg-extension behavior in flies during landing approaches. A new elementary motion detector (EMD) circuit was developed to measure optic flow.


An Analog VLSI Model of the Fly Elementary Motion Detector

Neural Information Processing Systems

Flies are capable of rapidly detecting and integrating visual motion information inbehaviorly-relevant ways. The first stage of visual motion processing in flies is a retinotopic array of functional units known as elementary motiondetectors (EMDs). Several decades ago, Reichardt and colleagues developed a correlation-based model of motion detection that described the behavior of these neural circuits. We have implemented a variant of this model in a 2.0-JLm analog CMOS VLSI process. The result isa low-power, continuous-time analog circuit with integrated photoreceptors thatresponds to motion in real time. The responses of the circuit to drifting sinusoidal gratings qualitatively resemble the temporal frequency response, spatial frequency response, and direction selectivity of motion-sensitive neurons observed in insects. In addition to its possible engineeringapplications, the circuit could potentially be used as a building block for constructing hardware models of higher-level insect motion integration.


An Analog VLSI Model of the Fly Elementary Motion Detector

Neural Information Processing Systems

Flies are capable of rapidly detecting and integrating visual motion information in behaviorly-relevant ways. The first stage of visual motion processing in flies is a retinotopic array of functional units known as elementary motion detectors (EMDs). Several decades ago, Reichardt and colleagues developed a correlation-based model of motion detection that described the behavior of these neural circuits. We have implemented a variant of this model in a 2.0-JLm analog CMOS VLSI process. The result is a low-power, continuous-time analog circuit with integrated photoreceptors that responds to motion in real time. The responses of the circuit to drifting sinusoidal gratings qualitatively resemble the temporal frequency response, spatial frequency response, and direction selectivity of motion-sensitive neurons observed in insects. In addition to its possible engineering applications, the circuit could potentially be used as a building block for constructing hardware models of higher-level insect motion integration.