Storing Covariance by the Associative Long-Term Potentiation and Depression of Synaptic Strengths in the Hippocampus
Stanton, Patric K., Sejnowski, Terrence J.
–Neural Information Processing Systems
We have tested this assumption in the hippocampus, a cortical structure or the brain that is involved in long-term memory. A brier, high-frequency activation or excitatory synapses in the hippocampus produces an increase in synaptic strength known as long-term potentiation, or LTP (BUss and Lomo, 1973), that can last ror many days. LTP is known to be Hebbian since it requires the simultaneous release or neurotransmitter from presynaptic terminals coupled with postsynaptic depolarization (Kelso et al, 1986; Malinow and Miller, 1986; Gustatrson et al, 1987). However, a mechanism ror the persistent reduction or synaptic strength that could balance LTP has not yet been demonstrated. We studied theassociative interactions between separate inputs onto the same dendritic trees or hippocampal pyramidal cells or field CAl, and round that a low-frequency input which, by itselr, does not persistently change synaptic strength, can either increase (associative LTP) or decrease in strength (associative long-term depression or LTD) depending upon whether it is positively or negatively correlated in time with a second, high-frequency bursting input. LTP or synaptic strength is Hebbian, and LTD is anti-Hebbian since it is elicited by pairing presynaptic firing with postsynaptic hyperpolarizationsufficient to block postsynaptic activity.
Neural Information Processing Systems
Dec-31-1989
- Country:
- Asia > Middle East
- Israel > Mediterranean Sea (0.24)
- North America > United States (0.70)
- Asia > Middle East
- Industry:
- Health & Medicine > Therapeutic Area > Neurology (1.00)
- Technology: