Comparison of Human and Machine Word Recognition

Schenkel, Markus, Latimer, Cyril, Jabri, Marwan A.

Neural Information Processing Systems 

We present a study which is concerned with word recognition rates for heavily degraded documents. We compare human with machine reading capabilitiesin a series of experiments, which explores the interaction of word/non-word recognition, word frequency and legality of non-words with degradation level. We also study the influence of character segmentation, andcompare human performance with that of our artificial neural network model for reading. We found that the proposed computer model uses word context as efficiently as humans, but performs slightly worse on the pure character recognition task. 1 Introduction Optical Character Recognition (OCR) of machine-print document images ·has matured considerably during the last decade. Recognition rates as high as 99.5% have been reported ongood quality documents. However, for lower image resolutions (200 Dpl and below), noisy images, images with blur or skew, the recognition rate declines considerably. Inbad quality documents, character segmentation is as big a problem as the actual character recognition.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found