Perceptron Learning of SAT
Flint, Alex, Blaschko, Matthew
–Neural Information Processing Systems
Boolean satisfiability (SAT) as a canonical NP-complete decision problem is one of the most important problems in computer science. In practice, real-world SAT sentences are drawn from a distribution that may result in efficient algorithms for their solution. Such SAT instances are likely to have shared characteristics and substructures. This work approaches the exploration of a family of SAT solvers as a learning problem. In particular, we relate polynomial time solvability of a SAT subset to a notion of margin between sentences mapped by a feature function into a Hilbert space. Provided this mapping is based on polynomial time computable statistics of a sentence, we show that the existance of a margin between these data points implies the existance of a polynomial time solver for that SAT subset based on the Davis-Putnam-Logemann-Loveland algorithm. Furthermore, we show that a simple perceptron-style learning rule will find an optimal SAT solver with a bounded number of training updates. We derive a linear time computable set of features and show analytically that margins exist for important polynomial special cases of SAT. Empirical results show an order of magnitude improvement over a state-of-the-art SAT solver on a hardware verification task.
Neural Information Processing Systems
Dec-31-2012
- Country:
- Europe > United Kingdom
- England (0.14)
- North America > United States (0.68)
- Europe > United Kingdom
- Genre:
- Research Report > New Finding (0.34)
- Industry:
- Education (0.34)
- Information Technology (0.35)
- Technology: