Assessing Approximations for Gaussian Process Classification

Kuss, Malte, Rasmussen, Carl E.

Neural Information Processing Systems 

Gaussian processes are attractive models for probabilistic classification but unfortunately exact inference is analytically intractable. We compare Laplace's method and Expectation Propagation (EP) focusing on marginal likelihood estimates and predictive performance. We explain theoretically and corroborate empirically that EP is superior to Laplace. We also compare to a sophisticated MCMC scheme and show that EP is surprisingly accurate. In recent years models based on Gaussian process (GP) priors have attracted much attention in the machine learning community. Whereas inference in the GP regression model with Gaussian noise can be done analytically, probabilistic classification using GPs is analytically intractable. Several approaches to approximate Bayesian inference have been suggested, including Laplace's approximation, Expectation Propagation (EP), variational approximations and Markov chain Monte Carlo (MCMC) sampling, some of these in conjunction with generalisation bounds, online learning schemes and sparse approximations. Despite the abundance of recent work on probabilistic GP classifiers, most experimental studies provide only anecdotal evidence, and no clear picture has yet emerged, as to when and why which algorithm should be preferred.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found