Unsupervised Classification of 3D Objects from 2D Views

Suzuki, Satoshi, Ando, Hiroshi

Neural Information Processing Systems 

Satoshi Suzuki Hiroshi Ando ATR Human Information Processing Research Laboratories 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan satoshi@hip.atr.co.jp, ando@hip.atr.co.jp Abstract This paper presents an unsupervised learning scheme for categorizing 3D objects from their 2D projected images. The scheme exploits an auto-associative network's ability to encode each view of a single object into a representation that indicates its view direction. We propose two models that employ different classification mechanisms; the first model selects an auto-associative network whose recovered view best matches the input view, and the second model is based on a modular architecture whose additional network classifies the views by splitting the input space nonlinearly. We demonstrate the effectiveness of the proposed classification models through simulations using 3D wire-frame objects. 1 INTRODUCTION The human visual system can recognize various 3D (three-dimensional) objects from their 2D (two-dimensional) retinal images although the images vary significantly as the viewpoint changes. Recent computational models have explored how to learn to recognize 3D objects from their projected views (Poggio & Edelman, 1990).

Similar Docs  Excel Report  more

TitleSimilaritySource
None found