Unsupervised Classification of 3D Objects from 2D Views

Suzuki, Satoshi, Ando, Hiroshi

Neural Information Processing Systems 

The human visual system can recognize various 3D (three-dimensional) objects from their 2D (two-dimensional) retinal images although the images vary significantly as the viewpoint changes. Recent computational models have explored how to learn to recognize 3D objects from their projected views (Poggio & Edelman, 1990). Most existing models are, however, based on supervised learning, i.e., during training the teacher tells which object each view belongs to. The model proposed by Weinshall et al. (1990) also requires a signal that segregates different objects during training. This paper, on the other hand, discusses unsupervised aspects of 3D object recognition where the system discovers categories by itself.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found