Maximize existing QA vision systems with Deep Learning AI - Mariner

#artificialintelligence 

The reputation and bottom line of a company can be adversely affected if defective products are released. If a defect is not detected, and the flawed product is not removed early in the production process, the damage can be costly – and the higher the unit value, the higher those costs will be. And worst of all, dissatisfied customers can demand returns. To mitigate these costs, many manufacturers install cameras to monitor their products as they move along their production lines. However, the data obtained may not always be useful – or more appropriately said, the data is useful, but existing machine vision systems may not be able to accurately assess it at full production speeds.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found