Goto

Collaborating Authors

#artificialintelligence


What our PrimeHub SDK can do towards MLOps

#artificialintelligence

Machine Learning Operations, MLOps, is a combination of processes that aims to provide services related to dataset, experiment, model, deployment, monitoring, and so on. A scalable and team-centric MLOps means can assist the whole team to be more efficient and reduce the efforts in delivering outcomes to production. PrimeHub is an end-to-end platform that allows users to prepare data, train models, review experiments, manage and deploy their trained models to the production environment. PrimeHub platform provides users with GUI to achieve the ML end-to-end workflow. Similarly, the PrimeHub SDK can provide the API and CLI manipulations to accomplish the same experiences. In this article, we will focus on how to use API to interact with the PrimeHub platform.


Solving a verbal reasoning test with word embeddings (Analogies)

#artificialintelligence

I tried two different approaches, none of which is a standard functionality to calculate analogies according to the word embeddings model. But they both use functionality from the libraries to calculate the arithmetic of words and the cosine similarity. As this method is often used, I implemented it as a function to keep me in check and debug the code throughout the experiment. However, this approach is really returning the words that best fit the analogy, not the score. This method is really the one that I finally used to calculate scores for analogies.


How Artificial Intelligence will Transform Software Development?

#artificialintelligence

Artificial Intelligence is modifying the developer's work by improving their quality, productivity & speed. From project planning to user experience everything is getting benefits from AI algorithms. AI will be going to improve software development in the future because it already serving human developers at each step of development. There is an estimation that in near future Artificial Intelligence market will see a growth rate of 18%. This means the demand for skilled software developers who are more strategic and creative will going to rise because later they'll be considered as an asset to the company.


(*EPUB/PDF)->Download The Deep Learning AI Playbook: Strategy for Disruptive Artificial Intelligence BY Carlos E Perez Full Book

#artificialintelligence

Deep Learning Artificial Intelligence involves the interplay of Computer Science, Physics, Biology, Linguistics and Psychology. In addition to that, it is technology that can be extremely disruptive. The ramifications to society and even our own humanity will be profound. There are few subjects that are as captivating and as consequential as this. Surprisingly, there is very little that is written about this new technology in a more comprehensive and cohesive way.


AI Weekly: The intractable challenge of bias in AI

#artificialintelligence

Last week, Twitter shared research showing that the platform's algorithms amplify tweets from right-of-center politicians and news outlets at the expense of left-leaning sources. Rumman Chowdhury, the head of Twitter's machine learning, ethics, transparency, and accountability team, said in an interview with Protocol that while some of the behavior could be user-driven, the reason for the bias isn't entirely clear. "We can see that it is happening. We are not entirely sure why it is happening," Chowdhury said. "When algorithms get put out into the world, what happens when people interact with it -- we can't model for that. We can't model for how individuals or groups of people will use Twitter, what will happen in the world in a way that will impact how people use Twitter."


Artificial intelligence spots anomalies in medical images

#artificialintelligence

Scientists from Skoltech, Philips Research, and Goethe University Frankfurt have trained a neural network to detect anomalies in medical images to assist physicians in sifting through countless scans in search of pathologies. Reported in IEEE Access, the new method is adapted to the nature of medical imaging and is more successful in spotting abnormalities than general-purpose solutions. Image anomaly detection is a task that comes up in data analysis in many industries. Medical scans, however, pose a particular challenge. It is way easier for algorithms to find, say, a car with a flat tire or a broken windshield in a series of car pictures than to tell which of the X-rays show early signs of pathology in the lungs, like the onset of COVID-19 pneumonia.


Robots can never rule the world - Why?

#artificialintelligence

Is it even valid to assume that robots will be evil in the future and would seek to control humans? It is likely that in the future we will see different types of intelligent robots with different allegiances (just like human beings). AI is already being experimented with in many countries and tech companies. Thus, robots with different human groups may fight each other, but there is no chance that all robots will fight all humans. Also, It's not necessary that robots are either gonna fight.


The Coming Convergence of NFTs and Artificial Intelligence

#artificialintelligence

In the near future, we should see the value of AI-generated NFTs to expand beyond generative art into more generic NFT utility categories providing a natural vehicle for leveraging the latest deep learning techniques. An example of this value proposition can be seen in digital artists like Refik Anadol who are already experimenting with cutting edge deep learning methods for the creation of NFTs. Anadol's studio have been a pioneer in using techniques such as GANs, and even dabbling into quantum computing, trained models in hundreds of millions images and audio clips to create astonishing visuals. NFTs have been one of the recent delivery mechanisms explored by Anadol.


Mount Sinai Launches First-Ever Dept. of Artificial Intelligence and Human Health

#artificialintelligence

The Department of Artificial Intelligence and Human Health mission is to lead the artificial intelligence-driven transformation of health care through innovative research, apply that knowledge to treatment in hospital and clinical settings, and provide personalized care for each patient, which will expand Mount Sinai's impact on human health across the Health System and around the world. This effort will include creating a hub-and-satellite model to make new tools and techniques available to all Mount Sinai physicians and building an infrastructure for high-performance computing and data access to improve Mount Sinai's diagnostic and treatment capabilities. The Department of AI and Human Health is also launching a campaign to recruit talented researchers, scientists, physicians, and students in the field. MSDW data goes back to 2003, covering a variety of EMR and ancillary systems at The Mount Sinai Hospital and expanding to Mount Sinai Queens, and in recent years, Mount Sinai Morningside, Mount Sinai West, and Mount Sinai Brooklyn hospitals. The MSDW team offers a list of data services to access custom data sets, custom data marts, and de-identified data.


Strengthening international cooperation on AI

#artificialintelligence

Since 2017, when Canada became the first country to adopt a national AI strategy, at least 60 countries have adopted some form of policy for artificial intelligence (AI). The prospect of an estimated boost of 16 percent, or US$13 trillion, to global output by 2030 has led to an unprecedented race to promote AI uptake across industry, consumer markets, and government services. Global corporate investment in AI has reportedly reached US$60 billion in 2020 and is projected to more than double by 2025. At the same time, the work on developing global standards for AI has led to significant developments in various international bodies. These encompass both technical aspects of AI (in standards development organizations (SDOs) such as the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), and the Institute of Electrical and Electronics Engineers (IEEE) among others) and the ethical and policy dimensions of responsible AI.