Unleashing the power of machine learning models in banking through explainable artificial intelligence (XAI)


The "black-box" conundrum is one of the biggest roadblocks preventing banks from executing their artificial intelligence (AI) strategies. It's easy to see why: Picture a large bank known for its technology prowess designing a new neural network model that predicts creditworthiness among the underserved community more accurately than any other algorithm in the marketplace. This model processes dozens of variables as inputs, including never-before-used alternative data. The developers are thrilled, senior management is happy that they can expand their services to the underserved market, and business executives believe they now have a competitive differentiator. But there is one pesky problem: The developers who built the model cannot explain how it arrives at the credit outcomes, let alone identify which factors had the biggest influence on them.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found