State of the Art in Automated Machine Learning

#artificialintelligence 

In recent years, machine learning has been very successful in solving a wide range of problems. In particular, neural networks have reached human, and sometimes super-human, levels of ability in tasks such as language translation, object recognition, game playing, and even driving cars. Aerospike is the global leader in next-generation, real-time NoSQL data solutions for any scale. Aerospike's patented Hybrid Memory Architecture delivers an unbreakable competitive advantage by unlocking the full potential of modern hardware, delivering previously unimaginable value from vast amounts of data at the edge, to the core and in the cloud. With this growth in capability has come a growth in complexity. Data scientists and machine learning engineers must perform feature engineering, design model architectures, and optimize hyperparameters. Since the purpose of the machine learning is to automate a task normally done by humans, naturally the next step is to automate the tasks of data scientists and engineers. This area of research is called automated machine learning, or AutoML. There have been many exciting developments in AutoML recently, and it's important to take a look at the current state of the art and learn about what's happening now and what's coming up in the future. InfoQ reached out to the following subject matter experts in the industry to discuss the current state and future trends in AutoML space. InfoQ: What is AutoML and why is it important?

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found