Funding of $5.5m announced for machine learning for geothermal work
University of Southern California (Los Angeles, CA): Developing novel data-driven predictive models for integration into real-time fault detection and diagnosis, and integrate those models by using predictive control algorithms to improve the efficiency of energy production operations in a geothermal power plant. The project will develop deep dynamic neural networks for fault prediction and predictive process control workflows to improve the efficiency of geothermal operations. Upflow Limited (Taupo, New Zealand): Making available multiple decades of closely-guarded production data from one of the world's longest operating geothermal fields, and combining it with the archives from the largest geothermal company operating in the U.S. Models developed from this massive data store will enable the creation of a prediction/recommendation engine that will help operators improve plant availability. Colorado School of Mines (Golden, CO): Applying new machine learning techniques to analyze remote-sensing images, with the goal of developing a process to identify the presence of blind geothermal resources based on surface characteristics. Colorado School of Mines will develop a methodology to automatically label data from hyperspectral images of Brady's Hot Springs, Desert Rock, and the Salton Sea.
May-7-2019, 00:44:37 GMT
- Country:
- North America > United States > California > Los Angeles County > Los Angeles (0.57)
- Industry:
- Technology: