Principal Component Analysis (PCA) with Scikit-learn

#artificialintelligence 

This is the second unsupervised machine learning algorithm that I'm discussing here. This time, the topic is Principal Component Analysis (PCA). At the very beginning of the tutorial, I'll explain the dimensionality of a dataset, what dimensionality reduction means, main approaches to dimensionality reduction, reasons for dimensionality reduction and what PCA means. Then, I will go deeper into the topic PCA by implementing the PCA algorithm with Scikit-learn machine learning library. This will help you to easily apply PCA to a real-world dataset and get results very fast. In a separate article (not in this one), I will discuss the mathematics behind the principal component analysis by manually executing the algorithm using the powerful numpy and pandas libraries.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found