Machine Learning for Quantum Design

#artificialintelligence 

In this talk I will discuss some of the long-term challenges emerging with the effort of making deep learning a relevant tool for controlled scientific discovery in many-body quantum physics. The current state of the art of deep neural quantum states and learning tools will be discussed in connection with open challenging problems in condensed matter physics, including frustrated magnetism and quantum dynamics. Variational algorithms for a gate-based quantum computer, like the QAOA, prescribe a fixed circuit ansatz --- up to a set of continuous parameters --- that is designed to find a low-energy state of a given target Hamiltonian. After reviewing the relevant aspects of the QAOA, I will describe attempts to make the algorithm more efficient. The strategies I will explore are 1) tuning the variational objective function away from the energy expectation value, 2) analytical estimates that allow elimination of some of the gates in the QAOA circuit, and 3) using methods of machine learning to search the design space of nearby circuits for improvements to the original ansatz.