7 lessons to ensure successful machine learning projects


When Michelle K. Lee, '88, SM '89, was sworn in as the director of the U.S. Patent and Trademark Agency in 2015, she saw an opportunity. The agency was a bit behind on digital transformation and adopting things like cloud computing and artificial intelligence, but the organization had mountains of data -- like more than 10 million patents the office has issued since opening in 1802, and 600,000 patent applications received each year. Lee led a project to use data and analytics to modernize the agency, such as implementing AI solutions to improve patent searches and the speed and quality of patents issued. By gathering data about how patent examiners make decisions, and determining outlying behavior, the office could also pinpoint areas in which examiners would benefit from targeted training. "If the U.S. Patent and Trademark Office, a 200-plus-year-old governmental agency, has a machine learning opportunity, so too does every organization," Lee said during a presentation at EmTech Digital, hosted by MIT Technology Review.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found