Robust, Efficient, Globally-Optimized Reinforcement Learning with the Parti-Game Algorithm

Al-Ansari, Mohammad A., Williams, Ronald J.

Neural Information Processing Systems 

Parti-game (Moore 1994a; Moore 1994b; Moore and Atkeson 1995) is a reinforcement learning (RL) algorithm that has a lot of promise in overcoming the curse of dimensionality that can plague RL algorithms when applied to high-dimensional problems. In this paper we introduce modifications to the algorithm that further improve its performance and robustness. In addition, while parti-game solutions can be improved locally by standard local path-improvement techniques, we introduce an add-on algorithm in the same spirit as parti-game that instead tries to improve solutions in a non-local manner. 1 INTRODUCTION Parti-game operates on goal problems by dynamically partitioning the space into hyperrectangular cells of varying sizes, represented using a k-d tree data structure. It assumes the existence of a pre-specified local controller that can be commanded to proceed from the current state to a given state. The algorithm uses a game-theoretic approach to assign costs to cells based on past experiences using a minimax algorithm.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found