Malleability of Students’ Perceptions of an Affect-Sensitive Tutor and Its Influence on Learning
D' (University of Notre Dame) | Mello, Sidney (University of Memphis) | Graesser, Art
We evaluated an affect-sensitive version of AutoTutor, a dialogue based ITS that simulates human tutors. While the original AutoTutor is sensitive to students’ cognitive states, the affect-sensitive tutor (Supportive tutor) also responds to students’ affective states (boredom, confusion, and frustration) with empathetic, encouraging, and motivational dialogue moves that are accompanied by appropriate emotional expressions. We conducted an experiment that compared the Supportive and Regular (non-affective) tutors over two 30-minute learning sessions with respect to perceived effectiveness, fidelity of cognitive and emotional feedback, engagement, and enjoyment. The results indicated that, irrespective of tutor, students’ ratings of engagement, enjoyment, and perceived learning decreased across sessions, but these ratings were not correlated with actual learning gains. In contrast, students’ perceptions of how closely the computer tutors resembled human tutors increased across learning sessions, was related to the quality of tutor feedback, the increase was greater for the Supportive tutor, and was a powerful predictor of learning. Implications of our findings for the design of affect-sensitive ITSs are discussed.
May-20-2012
- Country:
- North America > United States > Indiana (0.14)
- Genre:
- Research Report > New Finding (0.88)
- Industry:
- Technology: