A Machine Learning Approach to Predict Chemical Reactions

Neural Information Processing Systems 

Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Previous approaches are not highthroughput, are not generalizable or scalable, or lack sufficient data to be effective. We describe single mechanistic reactions as concerted electron movements from an electron orbital source to an electron orbital sink. We use an existing rule-based expert system to derive a dataset consisting of 2,989 productive mechanistic steps and 6.14 million non-productive mechanistic steps. We then pose identifying productive mechanistic steps as a ranking problem: rank potential orbital interactions such that the top ranked interactions yield the major products.