Sequence-to-Set Generative Models

Neural Information Processing Systems 

In this paper, we propose a sequence-to-set method that can transform any sequence generative model based on maximum likelihood to a set generative model where we can evaluate the utility/probability of any set. An efficient importance sampling algorithm is devised to tackle the computational challenge of learning our sequenceto-set model. We present GRU2Set, which is an instance of our sequence-to-set method and employs the famous GRU model as the sequence generative model. To further obtain permutation invariant representation of sets, we devise the SetNN model which is also an instance of the sequence-to-set model. A direct application of our models is to learn an order/set distribution from a collection of e-commerce orders, which is an essential step in many important operational decisions such as inventory arrangement for fast delivery.