MathNAS: If Blocks Have a Role in Mathematical Architecture Design Qinsi Wang

Neural Information Processing Systems 

Neural Architecture Search (NAS) has emerged as a favoured method for unearthing effective neural architectures. Recent development of large models has intensified the demand for faster search speeds and more accurate search results. However, designing large models by NAS is challenging due to the dramatical increase of search space and the associated huge performance evaluation cost. Consider a typical modular search space widely used in NAS, in which a neural architecture consists of m block nodes and a block node has n alternative blocks.