Bayesian Query Construction for Neural Network Models
Paass, Gerhard, Kindermann, Jörg
–Neural Information Processing Systems
If data collection is costly, there is much to be gained by actively selecting particularly informative data points in a sequential way. In a Bayesian decision-theoretic framework we develop a query selection criterion which explicitly takes into account the intended use of the model predictions. By Markov Chain Monte Carlo methods the necessary quantities can be approximated to a desired precision. As the number of data points grows, the model complexity is modified by a Bayesian model selection strategy. The properties of two versions of the criterion ate demonstrated in numerical experiments.
Neural Information Processing Systems
Dec-31-1995