Rapidly Adapting Artificial Neural Networks for Autonomous Navigation
–Neural Information Processing Systems
Dean A. Pomerleau School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract The ALVINN (Autonomous Land Vehicle In a Neural Network) project addresses the problem of training artificial neural networks in real time to perform difficult perception tasks. ALVINN,is a back-propagation network that uses inputs from a video camera and an imaging laser rangefinder to drive the CMU Navlab, a modified Chevy van. This paper describes training techniques which allow ALVINN to learn in under 5 minutes to autonomously control the Navlab by watching a human driver's response to new situations. Using these techniques, ALVINN has been trained to drive in a variety of circumstances including single-lane paved and unpaved roads, multilane lined and unlined roads, and obstacle-ridden on-and off-road environments, at speeds of up to 20 miles per hour. 1 INTRODUCTION Previous trainable connectionist perception systems have often ignored important aspects of the form and content of available sensor data. Because of the assumed impracticality of training networks to perform realistic high level perception tasks, connectionist researchers have frequently restricted their task domains to either toy problems (e.g. the TC identification problem [11] [6]) or fixed low level operations (e.g.
Neural Information Processing Systems
Dec-31-1991
- Country:
- North America > United States
- Massachusetts (0.29)
- Pennsylvania > Allegheny County
- Pittsburgh (0.24)
- North America > United States
- Industry:
- Transportation > Ground > Road (1.00)
- Technology: