Kohonen Networks and Clustering: Comparative Performance in Color Clustering
Snyder, Wesley, Nissman, Daniel, Bout, David Van den, Bilbro, Griff
–Neural Information Processing Systems
"vector quantization", and "unsupervised learning" are all words which descn'be the same process: assigning a few exemplars to represent a large set of samples. Perfonning that process is the subject of a substantial body of literature. In this paper, we are concerned with the comparison of various clustering techniques to a particular, practical application: color clustering. The color clustering problem is as follows: an image is recorded in full color -- that is, three components, RED, GREEN, and BLUE, each of which has been measured to 8 bits of precision. Thus, each pixel is a 24 bit quantity. We must find a representation in which 2563 possible colors are represented by only 8 bits per pixel. That is, for a problem with 256000 variables (512 x 512) variables, assign each variable to one of only 256 classes. The color clustering problem is currently of major economic interest since millions of display systems are sold each year which can only store 8 bits per pixel, but on which users would like to be able to display "true" color (or at least as near true color as possible). In this study, we have approached the problem using the standard techniques from the literature (including k-means -- ISODATA clustering[1,3,61, LBG[4]), competitive learning (referred to as CL herein) [2], and Kohonen feature maps [5,7,9].
Neural Information Processing Systems
Dec-31-1991
- Genre:
- Research Report (0.34)