Goto

Collaborating Authors

 Bilbro, Griff


Kohonen Networks and Clustering: Comparative Performance in Color Clustering

Neural Information Processing Systems

"vector quantization", and "unsupervised learning" are all words which descn'be the same process: assigning a few exemplars to represent a large set of samples. Perfonning that process is the subject of a substantial body of literature. In this paper, we are concerned with the comparison of various clustering techniques to a particular, practical application: color clustering. The color clustering problem is as follows: an image is recorded in full color -- that is, three components, RED, GREEN, and BLUE, each of which has been measured to 8 bits of precision. Thus, each pixel is a 24 bit quantity. We must find a representation in which 2563 possible colors are represented by only 8 bits per pixel. That is, for a problem with 256000 variables (512 x 512) variables, assign each variable to one of only 256 classes. The color clustering problem is currently of major economic interest since millions of display systems are sold each year which can only store 8 bits per pixel, but on which users would like to be able to display "true" color (or at least as near true color as possible). In this study, we have approached the problem using the standard techniques from the literature (including k-means -- ISODATA clustering[1,3,61, LBG[4]), competitive learning (referred to as CL herein) [2], and Kohonen feature maps [5,7,9].



Optimization by Mean Field Annealing

Neural Information Processing Systems

Nearly optimal solutions to many combinatorial problems can be found using stochastic simulated annealing. This paper extends the concept of simulated annealing from its original formulation as a Markov process to a new formulation based on mean field theory. Mean field annealing essentially replaces the discrete degrees offreedom in simulated annealing with their average values as computed by the mean field approximation. The net result is that equilibrium at a given temperature is achieved 1-2 orders of magnitude faster than with simulated annealing. A general framework forthe mean field annealing algorithm is derived, and its relationship toHopfield networks is shown. The behavior of MFA is examined both analytically and experimentally for a generic combinatorial optimizationproblem: graph bipartitioning. This analysis indicates the presence of critical temperatures which could be important inimproving the performance of neural networks.


Optimization by Mean Field Annealing

Neural Information Processing Systems

Nearly optimal solutions to many combinatorial problems can be found using stochastic simulated annealing. This paper extends the concept of simulated annealing from its original formulation as a Markov process to a new formulation based on mean field theory. Mean field annealing essentially replaces the discrete degrees of freedom in simulated annealing with their average values as computed by the mean field approximation. The net result is that equilibrium at a given temperature is achieved 1-2 orders of magnitude faster than with simulated annealing. A general framework for the mean field annealing algorithm is derived, and its relationship to Hopfield networks is shown. The behavior of MFA is examined both analytically and experimentally for a generic combinatorial optimization problem: graph bipartitioning. This analysis indicates the presence of critical temperatures which could be important in improving the performance of neural networks.