Rapid Plug-in Defenders

Neural Information Processing Systems 

In the realm of daily services, the deployment of deep neural networks underscores the paramount importance of their reliability. However, the vulnerability of these networks to adversarial attacks, primarily evasion-based, poses a concerning threat to their functionality. Common methods for enhancing robustness involve heavy adversarial training or leveraging learned knowledge from clean data, both necessitating substantial computational resources. This inherent time-intensive nature severely limits the agility of large foundational models to swiftly counter adversarial perturbations. To address this challenge, this paper focuses on the Rapid Plug-in Defender (RaPiD) problem, aiming to rapidly counter adversarial perturbations without altering the deployed model. Drawing inspiration from the generalization and the universal computation ability of pre-trained transformer models, we propose a novel method termed CeTaD (Considering Pre-trained Transformers as Defenders) for RaPiD, optimized for efficient computation. CeTaD strategically fine-tunes the normalization layer parameters within the defender using a limited set of clean and adversarial examples.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found