TrackIME: Enhanced Video Point Tracking via Instance Motion Estimation

Neural Information Processing Systems 

Tracking points in video frames is essential for understanding video content. However, the task is fundamentally hindered by the computation demands for brute-force correspondence matching across the frames. As the current models down-sample the frame resolutions to mitigate this challenge, they fall short in accurately representing point trajectories due to information truncation. Instead, we address the challenge by pruning the search space for point tracking and let the model process only the important regions of the frames without down-sampling. Our first key idea is to identify the object instance and its trajectory over the frames, then prune the regions of the frame that do not contain the instance.