Some Solutions to the Missing Feature Problem in Vision
–Neural Information Processing Systems
In visual processing the ability to deal with missing and noisy information is crucial. Occlusions and unreliable feature detectors often lead to situations where little or no direct information about features is available. However the available information is usually sufficient to highly constrain the outputs. We discuss Bayesian techniques for extracting class probabilities given partial data. The optimal solution involves integrating over the missing dimensions weighted by the local probability densities. We show how to obtain closed-form approximations to the Bayesian solution using Gaussian basis function networks. The framework extends naturally to the case of noisy features.
Neural Information Processing Systems
Dec-31-1993
- Technology: