Ahmad, Subutai
Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments
Iyer, Abhiram, Grewal, Karan, Velu, Akash, Souza, Lucas Oliveira, Forest, Jeremy, Ahmad, Subutai
A key challenge for AI is to build embodied systems that operate in dynamically changing environments. Such systems must adapt to changing task contexts and learn continuously. Although standard deep learning systems achieve state of the art results on static benchmarks, they often struggle in dynamic scenarios. In these settings, error signals from multiple contexts can interfere with one another, ultimately leading to a phenomenon known as catastrophic forgetting. In this article we investigate biologically inspired architectures as solutions to these problems. Specifically, we show that the biophysical properties of dendrites and local inhibitory systems enable networks to dynamically restrict and route information in a context-specific manner. Our key contributions are as follows. First, we propose a novel artificial neural network architecture that incorporates active dendrites and sparse representations into the standard deep learning framework. Next, we study the performance of this architecture on two separate benchmarks requiring task-based adaptation: Meta-World, a multi-task reinforcement learning environment where a robotic agent must learn to solve a variety of manipulation tasks simultaneously; and a continual learning benchmark in which the model's prediction task changes throughout training. Analysis on both benchmarks demonstrates the emergence of overlapping but distinct and sparse subnetworks, allowing the system to fluidly learn multiple tasks with minimal forgetting. Our neural implementation marks the first time a single architecture has achieved competitive results on both multi-task and continual learning settings. Our research sheds light on how biological properties of neurons can inform deep learning systems to address dynamic scenarios that are typically impossible for traditional ANNs to solve.
Two Sparsities Are Better Than One: Unlocking the Performance Benefits of Sparse-Sparse Networks
Hunter, Kevin Lee, Spracklen, Lawrence, Ahmad, Subutai
In principle, sparse neural networks should be significantly more efficient than traditional dense networks. Neurons in the brain exhibit two types of sparsity; they are sparsely interconnected and sparsely active. These two types of sparsity, called weight sparsity and activation sparsity, when combined, offer the potential to reduce the computational cost of neural networks by two orders of magnitude. Despite this potential, today's neural networks deliver only modest performance benefits using just weight sparsity, because traditional computing hardware cannot efficiently process sparse networks. In this article we introduce Complementary Sparsity, a novel technique that significantly improves the performance of dual sparse networks on existing hardware. We demonstrate that we can achieve high performance running weight-sparse networks, and we can multiply those speedups by incorporating activation sparsity. Using Complementary Sparsity, we show up to 100X improvement in throughput and energy efficiency performing inference on FPGAs. We analyze scalability and resource tradeoffs for a variety of kernels typical of commercial convolutional networks such as ResNet-50 and MobileNetV2. Our results with Complementary Sparsity suggest that weight plus activation sparsity can be a potent combination for efficiently scaling future AI models.
Grid Cell Path Integration For Movement-Based Visual Object Recognition
Leadholm, Niels, Lewis, Marcus, Ahmad, Subutai
Grid cells enable the brain to model the physical space of the world and navigate effectively via path integration, updating self-position using information from self-movement. Recent proposals suggest that the brain might use similar mechanisms to understand the structure of objects in diverse sensory modalities, including vision. In machine vision, object recognition given a sequence of sensory samples of an image, such as saccades, is a challenging problem when the sequence does not follow a consistent, fixed pattern - yet this is something humans do naturally and effortlessly. We explore how grid cell-based path integration in a cortical network can support reliable recognition of objects given an arbitrary sequence of inputs. Our network (GridCellNet) uses grid cell computations to integrate visual information and make predictions based on movements. We use local Hebbian plasticity rules to learn rapidly from a handful of examples (few-shot learning), and consider the task of recognizing MNIST digits given only a sequence of image feature patches. We compare GridCellNet to k-Nearest Neighbour (k-NN) classifiers as well as recurrent neural networks (RNNs), both of which lack explicit mechanisms for handling arbitrary sequences of input samples. We show that GridCellNet can reliably perform classification, generalizing to both unseen examples and completely novel sequence trajectories. We further show that inference is often successful after sampling a fraction of the input space, enabling the predictive GridCellNet to reconstruct the rest of the image given just a few movements. We propose that dynamically moving agents with active sensors can use grid cell representations not only for navigation, but also for efficient recognition and feature prediction of seen objects.
How Can We Be So Dense? The Benefits of Using Highly Sparse Representations
Ahmad, Subutai, Scheinkman, Luiz
Most artificial networks today rely on dense representations, whereas biological networks rely on sparse representations. In this paper we show how sparse representations can be more robust to noise and interference, as long as the underlying dimensionality is sufficiently high. A key intuition that we develop is that the ratio of the operable volume around a sparse vector divided by the volume of the representational space decreases exponentially with dimensionality. We then analyze computationally efficient sparse networks containing both sparse weights and activations. Simulations on MNIST and the Google Speech Command Dataset show that such networks demonstrate significantly improved robustness and stability compared to dense networks, while maintaining competitive accuracy. We discuss the potential benefits of sparsity on accuracy, noise robustness, hyperparameter tuning, learning speed, computational efficiency, and power requirements.
How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites
Ahmad, Subutai, Hawkins, Jeff
We propose a formal mathematical model for sparse representations and active dendrites in neocortex. Our model is inspired by recent experimental findings on active dendritic processing and NMDA spikes in pyramidal neurons. These experimental and modeling studies suggest that the basic unit of pattern memory in the neocortex is instantiated by small clusters of synapses operated on by localized non-linear dendritic processes. We derive a number of scaling laws that characterize the accuracy of such dendrites in detecting activation patterns in a neuronal population under adverse conditions. We introduce the union property which shows that synapses for multiple patterns can be randomly mixed together within a segment and still lead to highly accurate recognition. We describe simulation results that provide further insight into sparse representations as well as two primary results. First we show that pattern recognition by a neuron with active dendrites can be extremely accurate and robust with high dimensional sparse inputs even when using a tiny number of synapses to recognize large patterns. Second, equations representing recognition accuracy of a dendrite predict optimal NMDA spiking thresholds under a generous set of assumptions. The prediction tightly matches NMDA spiking thresholds measured in the literature. Our model matches many of the known properties of pyramidal neurons. As such the theory provides a mathematical framework for understanding the benefits and limits of sparse representations in cortical networks.
Efficient Methods for Dealing with Missing Data in Supervised Learning
Tresp, Volker, Neuneier, Ralph, Ahmad, Subutai
Palo Alto, CA 94304 Abstract We present efficient algorithms for dealing with the problem of missing inputs(incomplete feature vectors) during training and recall. Our approach is based on the approximation of the input data distribution usingParzen windows. For recall, we obtain closed form solutions for arbitrary feedforward networks. For training, we show how the backpropagation step for an incomplete pattern can be approximated by a weighted averaged backpropagation step. The complexity of the solutions for training and recall is independent of the number of missing features.
Training Neural Networks with Deficient Data
Tresp, Volker, Ahmad, Subutai, Neuneier, Ralph
We analyze how data with uncertain or missing input features can be incorporated into the training of a neural network. The general solution requires a weighted integration over the unknown or uncertain input although computationally cheaper closed-form solutions can be found for certain Gaussian Basis Function (GBF) networks. We also discuss cases in which heuristical solutions such as substituting the mean of an unknown input can be harmful.
Training Neural Networks with Deficient Data
Tresp, Volker, Ahmad, Subutai, Neuneier, Ralph
We analyze how data with uncertain or missing input features can be incorporated into the training of a neural network. The general solutionrequires a weighted integration over the unknown or uncertain input although computationally cheaper closed-form solutions canbe found for certain Gaussian Basis Function (GBF) networks. We also discuss cases in which heuristical solutions such as substituting the mean of an unknown input can be harmful.
Feature Densities are Required for Computing Feature Correspondences
Ahmad, Subutai
The feature correspondence problem is a classic hurdle in visual object-recognition concerned with determining the correct mapping between the features measured from the image and the features expected by the model. In this paper we show that determining good correspondences requires information about the joint probability density over the image features. We propose "likelihood based correspondence matching" as a general principle for selecting optimal correspondences. The approach is applicable to nonrigid models, allows nonlinear perspective transformations, and can optimally deal with occlusions and missing features.