Stochastic Optimization Schemes for Performative Prediction with Nonconvex Loss
–Neural Information Processing Systems
This paper studies a risk minimization problem with decision dependent data distribution. The problem pertains to the performative prediction setting in which a trained model can affect the outcome estimated by the model. Such dependency creates a feedback loop that influences the stability of optimization algorithms such as stochastic gradient descent (SGD). We present the first study on performative prediction with smooth but possibly non-convex loss. We analyze a greedy deployment scheme with SGD (SGD-GD). Note that in the literature, SGD-GD is often studied with strongly convex loss. We first propose the definition of stationary performative stable (SPS) solutions through relaxing the popular performative stable condition. We then prove that SGD-GD converges to a biased SPS solution in expectation. We consider two conditions of sensitivity on the distribution shifts: (i) the sensitivity is characterized by Wasserstein-1 distance and the loss is Lipschitz w.r.t.
Neural Information Processing Systems
May-28-2025, 11:46:49 GMT