Noise Suppression Based on Neurophysiologically-motivated SNR Estimation for Robust Speech Recognition

Tchorz, Jürgen, Kleinschmidt, Michael, Kollmeier, Birger

Neural Information Processing Systems 

For SNR-estimation, the input signal is transformed into so-called Amplitude Modulation Spectrograms (AMS), which represent both spectral and temporal characteristics of the respective analysis frame, and which imitate the representation of modulation frequencies in higher stages of the mammalian auditory system. A neural network is used to analyse AMS patterns generated from noisy speech and estimates the local SNR. Noise suppression is achieved by attenuating frequency channels according to their SNR. The noise suppression algorithm is evaluated in speakerindependent digit recognition experiments and compared to noise suppression by Spectral Subtraction. 1 Introduction One of the major problems in automatic speech recognition (ASR) systems is their lack of robustness in noise, which severely degrades their usefulness in many practical applications. Several proposals have been made to increase the robustness of ASR systems, e.g. by model compensation or more noise-robust feature extraction [1, 2]. Another method to increase robustness of ASR systems is to suppress the background noise before feature extraction. Classical approaches for single-channel noise suppression are Spectral Subtraction [3] and related schemes, e.g.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found