Probabilistic Inference of Speech Signals from Phaseless Spectrograms
Achan, Kannan, Roweis, Sam T., Frey, Brendan J.
–Neural Information Processing Systems
Many techniques for complex speech processing such as denoising and deconvolution, time/frequency warping, multiple speaker separation, and multiple microphone analysis operate on sequences of short-time power spectra (spectrograms), a representation which is often well-suited to these tasks. However, a significant problem with algorithms that manipulate spectrograms is that the output spectrogram does not include a phase component, which is needed to create a time-domain signal that has good perceptual quality. Here we describe a generative model of time-domain speech signals and their spectrograms, and show how an efficient optimizer can be used to find the maximum a posteriori speech signal, given the spectrogram.
Neural Information Processing Systems
Dec-31-2004