Goto

Collaborating Authors

 Frey, Brendan J.


PixelGAN Autoencoders

Neural Information Processing Systems

In this paper, we describe the "PixelGAN autoencoder", a generative autoencoder in which the generative path is a convolutional autoregressive neural network on pixels (PixelCNN) that is conditioned on a latent code, and the recognition path uses a generative adversarial network (GAN) to impose a prior distribution on the latent code. We show that different priors result in different decompositions of information between the latent code and the autoregressive decoder. For example, by imposing a Gaussian distribution as the prior, we can achieve a global vs. local decomposition, or by imposing a categorical distribution as the prior, we can disentangle the style and content information of images in an unsupervised fashion. We further show how the PixelGAN autoencoder with a categorical prior can be directly used in semi-supervised settings and achieve competitive semi-supervised classification results on the MNIST, SVHN and NORB datasets.


Min-Max Propagation

Neural Information Processing Systems

We study the application of min-max propagation, a variation of belief propagation, for approximate min-max inference in factor graphs. We show that for โ€œanyโ€ high-order function that can be minimized in O(ฯ‰), the min-max message update can be obtained using an efficient O(K(ฯ‰ + log(K)) procedure, where K is the number of variables. We demonstrate how this generic procedure, in combination with efficient updates for a family of high-order constraints, enables the application of min-max propagation to efficiently approximate the NP-hard problem of makespan minimization, which seeks to distribute a set of tasks on machines, such that the worst case load is minimized.


Generating and designing DNA with deep generative models

arXiv.org Machine Learning

We propose generative neural network methods to generate DNA sequences and tune them to have desired properties. We present three approaches: creating synthetic DNA sequences using a generative adversarial network; a DNA-based variant of the activation maximization ("deep dream") design method; and a joint procedure which combines these two approaches together. We show that these tools capture important structures of the data and, when applied to designing probes for protein binding microarrays, allow us to generate new sequences whose properties are estimated to be superior to those found in the training data. We believe that these results open the door for applying deep generative models to advance genomics research.


Learning Wake-Sleep Recurrent Attention Models

Neural Information Processing Systems

Despite their success, convolutional neural networks are computationally expensive because they must examine all image locations. Stochastic attention-based models have been shown to improve computational efficiency at test time, but they remain difficult to train because of intractable posterior inference and high variance in the stochastic gradient estimates. Borrowing techniques from the literature on training deep generative models, we present the Wake-Sleep Recurrent Attention Model, a method for training stochastic attention networks which improves posterior inference and which reduces the variability in the stochastic gradients. We show that our method can greatly speed up the training time for stochastic attention networks in the domains of image classification and caption generation.


Winner-Take-All Autoencoders

Neural Information Processing Systems

In this paper, we propose a winner-take-all method for learning hierarchical sparse representations in an unsupervised fashion. We first introduce fully-connected winner-take-all autoencoders which use mini-batch statistics to directly enforce a lifetime sparsity in the activations of the hidden units. We then propose the convolutional winner-take-all autoencoder which combines the benefits of convolutional architectures and autoencoders for learning shift-invariant sparse representations. We describe a way to train convolutional autoencoders layer by layer, where in addition to lifetime sparsity, a spatial sparsity within each feature map is achieved using winner-take-all activation functions. We will show that winner-take-all autoencoders can be used to to learn deep sparse representations from the MNIST, CIFAR-10, ImageNet, Street View House Numbers and Toronto Face datasets, and achieve competitive classification performance.


Variational Learning in Mixed-State Dynamic Graphical Models

arXiv.org Machine Learning

Many real-valued stochastic time-series are locally linear (Gassian), but globally non-linear. For example, the trajectory of a human hand gesture can be viewed as a linear dynamic system driven by a nonlinear dynamic system that represents muscle actions. We present a mixed-state dynamic graphical model in which a hidden Markov model drives a linear dynamic system. This combination allows us to model both the discrete and continuous causes of trajectories such as human gestures. The number of computations needed for exact inference is exponential in the sequence length, so we derive an approximate variational inference technique that can also be used to learn the parameters of the discrete and continuous models. We show how the mixed-state model and the variational technique can be used to classify human hand gestures made with a computer mouse.


Learning Graphical Models of Images, Videos and Their Spatial Transformations

arXiv.org Machine Learning

Mixtures of Gaussians, factor analyzers (probabilistic PCA) and hidden Markov models are staples of static and dynamic data modeling and image and video modeling in particular. We show how topographic transformations in the input, such as translation and shearing in images, can be accounted for in these models by including a discrete transformation variable. The resulting models perform clustering, dimensionality reduction and time-series analysis in a way that is invariant to transformations in the input. Using the EM algorithm, these transformation-invariant models can be fit to static data and time series. We give results on filtering microscopy images, face and facial pose clustering, handwritten digit modeling and recognition, video clustering, object tracking, and removal of distractions from video sequences.


Probabilistic n-Choose-k Models for Classification and Ranking

Neural Information Processing Systems

In categorical data there is often structure in the number of variables that take on each label. For example, the total number of objects in an image and the number of highly relevant documents per query in web search both tend to follow a structured distribution. In this paper, we study a probabilistic model that explicitly includes a prior distribution over such counts, along with a count-conditional likelihood that defines probabilities over all subsets of a given size. When labels are binary and the prior over counts is a Poisson-Binomial distribution, a standard logistic regression model is recovered, but for other count distributions, such priors induce global dependencies and combinatorics that appear to complicate learning and inference. However, we demonstrate that simple, efficient learning procedures can be derived for more general forms of this model. We illustrate the utility of the formulation by exploring applications to multi-object classification, learning to rank, and top-K classification.


Learning Generative Models of Similarity Matrices

arXiv.org Machine Learning

We describe a probabilistic (generative) view of affinity matrices along with inference algorithms for a subclass of problems associated with data clustering. This probabilistic view is helpful in understanding different models and algorithms that are based on affinity functions OF the data. IN particular, we show how(greedy) inference FOR a specific probabilistic model IS equivalent TO the spectral clustering algorithm.It also provides a framework FOR developing new algorithms AND extended models. AS one CASE, we present new generative data clustering models that allow us TO infer the underlying distance measure suitable for the clustering problem at hand. These models seem to perform well in a larger class of problems for which other clustering algorithms (including spectral clustering) usually fail. Experimental evaluation was performed in a variety point data sets, showing excellent performance.


Extending Factor Graphs so as to Unify Directed and Undirected Graphical Models

arXiv.org Artificial Intelligence

The two most popular types of graphical model are directed models (Bayesian networks) and undirected models (Markov random fields, or MRFs). Directed and undirected models offer complementary properties in model construction, expressing conditional independencies, expressing arbitrary factorizations of joint distributions, and formulating message-passing inference algorithms. We show that the strengths of these two representations can be combined in a single type of graphical model called a 'factor graph'. Every Bayesian network or MRF can be easily converted to a factor graph that expresses the same conditional independencies, expresses the same factorization of the joint distribution, and can be used for probabilistic inference through application of a single, simple message-passing algorithm. In contrast to chain graphs, where message-passing is implemented on a hypergraph, message-passing can be directly implemented on the factor graph. We describe a modified 'Bayes-ball' algorithm for establishing conditional independence in factor graphs, and we show that factor graphs form a strict superset of Bayesian networks and MRFs. In particular, we give an example of a commonly-used 'mixture of experts' model fragment, whose independencies cannot be represented in a Bayesian network or an MRF, but can be represented in a factor graph. We finish by giving examples of real-world problems that are not well suited to representation in Bayesian networks and MRFs, but are well-suited to representation in factor graphs.