Learning with ensembles: How overfitting can be useful

Sollich, Peter, Krogh, Anders

Neural Information Processing Systems 

We study the characteristics of learning with ensembles. Solving exactly the simple model of an ensemble of linear students, we find surprisingly rich behaviour. For learning in large ensembles, it is advantageous to use under-regularized students, which actually over-fit the training data. Globally optimal performance can be obtained by choosing the training set sizes of the students appropriately. For smaller ensembles, optimization of the ensemble weights can yield significant improvements in ensemble generalization performance, in particular if the individual students are subject to noise in the training process. Choosing students with a wide range of regularization parameters makes this improvement robust against changes in the unknown level of noise in the training data. 1 INTRODUCTION An ensemble is a collection of a (finite) number of neural networks or other types of predictors that are trained for the same task.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found