Pandora's Box: Towards Building Universal Attackers against Real-World Large Vision-Language Models

Neural Information Processing Systems 

Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding tasks. Nevertheless, these models are susceptible to adversarial examples. In real-world applications, existing LVLM attackers generally rely on the detailed prior knowledge of the model to generate effective perturbations. Moreover, these attacks are task-specific, leading to significant costs for designing perturbation. Motivated by the research gap and practical demands, in this paper, we make the first attempt to build a universal attacker against real-world LVLMs, focusing on two critical aspects: (i) restricting access to only the LVLM inputs and outputs.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found