Interventional Causal Discovery in a Mixture of DAGs Dmitriy A. Katz Dennis Wei Carnegie Mellon University IBM Research IBM Research Prasanna Sattigeri

Neural Information Processing Systems 

Causal interactions among a group of variables are often modeled by a single causal graph. In some domains, however, these interactions are best described by multiple co-existing causal graphs, e.g., in dynamical systems or genomics. This paper addresses the hitherto unknown role of interventions in learning causal interactions among variables governed by a mixture of causal systems, each modeled by one directed acyclic graph (DAG). Causal discovery from mixtures is fundamentally more challenging than single-DAG causal discovery. Two major difficulties stem from (i) an inherent uncertainty about the skeletons of the component DAGs that constitute the mixture and (ii) possibly cyclic relationships across these component DAGs. This paper addresses these challenges and aims to identify edges that exist in at least one component DAG of the mixture, referred to as the true edges. First, it establishes matching necessary and sufficient conditions on the size of interventions required to identify the true edges.