A Dynamical Systems Approach for a Learnable Autonomous Robot
–Neural Information Processing Systems
This paper discusses how a robot can learn goal-directed navigation tasks using local sensory inputs. The emphasis is that such learning tasks could be formulated as an embedding problem of dynamical systems: desired trajectories in a task space should be embedded into an adequate sensory-based internal state space so that an unique mapping from the internal state space to the motor command could be established. The paper shows that a recurrent neural network suffices in self-organizing such an adequate internal state space from the temporal sensory input.
Neural Information Processing Systems
Dec-31-1996