The Contextual Lasso: Sparse Linear Models via Deep Neural Networks

Neural Information Processing Systems 

Sparse linear models are one of several core tools for interpretable machine learning, a field of emerging importance as predictive models permeate decision-making in many domains. Unfortunately, sparse linear models are far less flexible as functions of their input features than black-box models like deep neural networks. With this capability gap in mind, we study a not-uncommon situation where the input features dichotomize into two groups: explanatory features, which are candidates for inclusion as variables in an interpretable model, and contextual features, which select from the candidate variables and determine their effects. This dichotomy leads us to the contextual lasso, a new statistical estimator that fits a sparse linear model to the explanatory features such that the sparsity pattern and coefficients vary as a function of the contextual features. The fitting process learns this function nonparametrically via a deep neural network. To attain sparse coefficients, we train the network with a novel lasso regularizer in the form of a projection layer that maps the network's output onto the space of l

Similar Docs  Excel Report  more

TitleSimilaritySource
None found