Bandit Algorithms boost motor-task selection for Brain Computer Interfaces
–Neural Information Processing Systems
Brain-computer interfaces (BCI) allow users to "communicate" with a computer without using their muscles. BCI based on sensori-motor rhythms use imaginary motor tasks, such as moving the right or left hand, to send control signals. The performances of a BCI can vary greatly across users but also depend on the tasks used, making the problem of appropriate task selection an important issue. This study presents a new procedure to automatically select as fast as possible a discriminant motor task for a brain-controlled button. We develop for this purpose an adaptive algorithm, UCB-classif, based on the stochastic bandit theory.
Neural Information Processing Systems
Mar-14-2024, 08:56:55 GMT