Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
–Neural Information Processing Systems
We introduce a feature scattering-based adversarial training approach for improving model robustness against adversarial attacks. Conventional adversarial training approaches leverage a supervised scheme (either targeted or non-targeted) in generating attacks for training, which typically suffer from issues such as label leaking as noted in recent works. Differently, the proposed approach generates adversarial images for training through feature scattering in the latent space, which is unsupervised in nature and avoids label leaking. More importantly, this new approach generates perturbed images in a collaborative fashion, taking the inter-sample relationships into consideration. We conduct analysis on model robustness and demonstrate the effectiveness of the proposed approach through extensively experiments on different datasets compared with state-of-the-art approaches.
Neural Information Processing Systems
Jan-27-2025, 10:21:35 GMT
- Country:
- North America > Canada (0.14)
- Genre:
- Research Report
- New Finding (0.68)
- Promising Solution (0.48)
- Research Report
- Industry:
- Government > Military (0.62)
- Information Technology > Security & Privacy (0.86)
- Technology: