Second Order Approximations for Probability Models

Kappen, Hilbert J., Wiegerinck, Wim

Neural Information Processing Systems 

In this paper, we derive a second order mean field theory for directed graphical probability models. By using an information theoretic argument it is shown how this can be done in the absense of a partition function. This method is a direct generalisation of the well-known TAP approximation for Boltzmann Machines. In a numerical example, it is shown that the method greatly improves the first order mean field approximation. For a restricted class of graphical models, so-called single overlap graphs, the second order method has comparable complexity to the first order method. For sigmoid belief networks, the method is shown to be particularly fast and effective.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found