Teacher Teacher LLM LLM Teaching

Neural Information Processing Systems 

Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, in human education, teaching enhances not only the students but also the teachers by fostering more rigorous and clearer reasoning, as well as deeper knowledge building. We ask: Can LLMs also learn by teaching (LbT) for better reasoning? If the answer is yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this question. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and bring improvements.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found