PARTITIONING OF SENSORY DATA BY A CORTICAL NETWORK
Granger, Richard, Ambros-Ingerson, Jose, Henry, Howard, Lynch, Gary
–Neural Information Processing Systems
SUMMARY To process sensory data, sensory brain areas must preserve information about both the similarities and differences among learned cues: without the latter, acuity would be lost, whereas without the former, degraded versions of a cue would be erroneously thought to be distinct cues, and would not be recognized. We have constructed a model of piriform cortex incorporating a large number of biophysical, anatomical and physiological parameters, such as two-step excitatory firing thresholds, necessary and sufficient conditions for long-term potentiation (LTP) of synapses, three distinct types of inhibitory currents (short IPSPs, long hyperpolarizing currents (LHP) and long cellspecific afterhyperpolarization (AHP)), sparse connectivity between bulb and layer-II cortex, caudally-flowing excitatory collateral fibers, nonlinear dendritic summation, etc. We have tested the model for its ability to learn similarity-and difference-preserving encodings of incoming sensory cueSj the biological characteristics of the model enable it to produce multiple encodings of each input cue in such a way that different readouts of the cell firing activity of the model preserve both similarity and difference'information. In particular, probabilistic quantal transmitter-release properties of piriform synapses give rise to probabilistic postsynaptic voltage levels which, in combination with the activity of local patches of inhibitory interneurons in layer II, differentially select bursting vs. single-pulsing layer-II cells. Time-locked firing to the theta rhythm (Larson and Lynch, 1986) enables distinct spatial patterns to be read out against a relatively quiescent background firing rate. Training trials using the physiological rules for induction of LTP yield stable layer-II-cell spatial firing patterns for learned cues. Multiple simulated olfactory input patterns (Le., those that share many chemical features) will give rise to strongly-overlapping bulb firing patterns, activating many shared lateral olfactory tract (LOT) axons innervating layer Ia of piriform cortex, which in tum yields highly overlapping layer-II-cell excitatory potentials, enabling this spatial layer-II-cell encoding to preserve the overlap (similarity) among similar inputs. At the same time, those synapses that are enhanced by the learning process cause stronger cell firing, yielding strong, cell-specific afterhyperpolarizing (AHP) currents. Local inhibitory intemeurons effectively select alternate cells to fire once strongly-firing cells have undergone AHP. These alternate cells then activate their caudally-flowing recurrent collaterals, activating distinct populations of synapses in caudal layer lb.
Neural Information Processing Systems
Dec-31-1988
- Country:
- North America > United States > California > Orange County > Irvine (0.14)
- Industry:
- Health & Medicine > Therapeutic Area > Neurology (0.46)
- Technology: