Clustering with a Domain-Specific Distance Measure
Gold, Steven, Mjolsness, Eric, Rangarajan, Anand
–Neural Information Processing Systems
The distance measure and learning problem are formally described as nested objective functions. We derive an efficient algorithm by using optimization techniques that allow us to divide up the objective function into parts which may be minimized in distinct phases. The algorithm has accurately recreated 10 prototypes from a randomly generated sample database of 100 images consisting of 20 points each in 120 experiments. Finally, by incorporating permutation invariance in our distance measure, we have a technique that we may be able to apply to the clustering of graphs. Our goal is to develop measures which will enable the learning of objects with shape or structure. Acknowledgements This work has been supported by AFOSR grant F49620-92-J-0465 and ONR/DARPA grant N00014-92-J-4048.
Neural Information Processing Systems
Dec-31-1994